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Phase-field simulations of dendritic crystal growth in a forced flow
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Convective effects on free dendritic crystal growth into a supercooled melt in two dimensions are investi-
gated using the phase-field method. The phase-field model incorporates both melt convection and thermal
noise. A multigrid method is used to solve the conservation equations for flow. To fully resolve the diffuse
interface region and the interactions of dendritic growth with flow, both the phase-field and flow equations are
solved on a highly refined grid where up to 2.1 million control volumes are employed. A multiple time-step
algorithm is developed that uses a large time step for the flow-field calculations while reserving a fine time step
for the phase-field evolution. The operating state~velocity and shape! of a dendrite tip in a uniform axial flow
is found to be in quantitative agreement with the prediction of the Oseen-Ivantsov transport theory if a tip
radius based on a parabolic fit is used. Furthermore, using this parabolic tip radius, the ratio of the selection
parameters without and with flow is shown to be close to unity, which is in agreement with linearized
solvability theory for the ranges of the parameters considered. Dendritic sidebranching in a forced flow is also
quantitatively studied. Compared to a dendrite growing at the same supercooling in a diffusive environment,
convection is found to increase the amplitude and frequency of the sidebranches. The phase-field results for the
scaled sidebranch amplitude and wavelength variations with distance from the tip are compared to linear
Wentzel-Kramers-Brillouin theory. It is also shown that the asymmetric sidebranch growth on the upstream
and downstream sides of a dendrite arm growing at an angle with respect to the flow can be explained by the
differences in the mean shapes of the two sides of the arm.
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I. INTRODUCTION

Free dendritic growth of a crystal into a supercooled m
involves two inherently coupled processes: the steady-s
growth of the dendrite tip and the time-dependent si
branching development. The dendrite tip is usually char
terized by its operating state: growth velocity and tip sha
In the absence of flow, microscopic solvability theory@1–3#
has successfully clarified the crucial role played by crys
line anisotropy in the tip selection, and this theory has b
confirmed by phase-field simulations in two@4,5# and three
@6# dimensions. Dendritic sidebranches are primarily imp
tant to metallurgists because they determine the microst
ture and microsegregation patterns in metals and alloys.

Convective flow usually accompanies dendritic crys
growth. In fact, all dendritic growth data acquired under t
restrial conditions are found to deviate from the predictio
of diffusion theories at low supercoolings@7–10#. Convec-
tion in the melt is believed to be responsible for that dev
tion. The effects of convection on dendritic growth and p
tern formation have been an active research topic for m
years, but have not been fully understood. Experimental
vestigations of the operating state of a dendrite tip in
presence of a forced flow have failed to yield consistent
sults. Bouissouet al. @11# found that the inverse of the sele
tion parameter 1/s* ;r2V, where r and V denote the tip
radius and velocity, respectively, increases for pivalic a
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~PVA! dendrites almost linearly with the longitudinal com
ponent of the external flow velocity, but is independent
the transverse component of the flow velocity. Emsellem a
Tabeling @12# performed growth experiments using amm
nium bromide and found 1/s* to be almost independent o
the external flow velocity in their experimental range. On t
other hand, the experiments on succinonitrile~SCN! by Lee
et al. @13# and Ananth and Gill@14# indicate that 1/s* de-
creases, rather than increases, with increasing flow velo

On the theoretical side, the presence of melt convec
considerably complicates the tip-selection problem. Theo
ical models have been developed to predict how heat tra
port away from the tip is modified by flow in various situa
tions @15–21#. Ben Amar and Pomeau@22# have proposed
scaling laws to characterize the tip-operating state in diff
ent regimes. Bouissou and Pelce@23# have extended the lin
earized solvability theory, which assumes a parabolic
shape, to make quantitative predictions of tip selection
the case of a uniform axial flow in two dimensions. A rigo
ous treatment of dendritic growth with flow, however, h
remained lacking. Melt convection adds new length and ti
scales to the problem and could lead to the formation
completely different dendritic patterns in comparison to t
purely diffusive case.

The formation and development of sidebranches are g
erally attributed to the Mullins-Sekerka instability@24#. Side-
branching is believed to initiate from thermal noise intrin
cally present in a solidification system. Langer and c
workers @25–27# theoretically investigated the selectiv
amplification of thermal noise near the tip of an axisymm
ric dendrite. Brener and Temkin@28# showed that quantita
©2001 The American Physical Society01-1
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tive agreement with experiments could only be achieved
taking into account the nonaxisymmetric shape of dendri
Many experiments have been performed to study dend
sidebranching behavior for a variety of materials@7,29–31#.
Doughertyet al. @29# studied the growth of ammonium bro
mide dendrites and found that sidebranches are not peri
at any distance from the tip, with apparently random var
tions in both phase and amplitude. Bouissouet al. @30# in-
vestigated dendrites of pivalic acid under the influence o
periodic forcing flow and found that the dendrites beha
just like a linear selection amplifier, which is in qualitativ
agreement with linear WKB theory. Bisang and Bilgram@31#
measured the tip shape and sidebranches of xenon dend
and obtained quantitative agreement with the theory of
ener and Temkin@28# for thermal noise amplification along
nonaxisymmetric dendrite.

The phase-field method has emerged as a powerful
for numerically simulating dendritic growth@32–38#.
Through the introduction of a phase-field variable to dist
guish between the solid and liquid phases, the method
vides a continuum description of phase transformation,
the complicated topological changes of a solid-liquid int
face can be handled easily without the need to track
interface. Recently, phase-field models for solidificati
have been extended to include melt convection@39–41#, pro-
viding a novel approach to study the interactions of dendr
growth and melt convection.

The objective of this paper is to present a quantitat
study of free dendritic growth of a pure substance in a for
flow in two dimensions using the phase-field method. B
the tip-operating state and the sidebranching developme
a forced flow are investigated. While we presented some
our results on the tip-operating state in the presence of fl
in a recent communication@42#, this full-length paper pro-
vides a more detailed account of the work and also inclu
sidebranching. To our knowledge, the only previous stu
using the phase-field method for simulating dendritic grow
with melt convection is by Tonhardt and Amberg@40#, who
focused on dendritic growth from a wall inside a chann
They found that sidebranching is promoted on the upstre
side and inhibited on the downstream side, but no quan
tive comparison was made with existing sharp interfa
theories.

The present paper is organized as follows. Following t
Introduction, Sec. II gives the formulation of the phase-fie
model that incorporates both melt convection and ther
noise quantitatively. The asymptotics of the phase-fi
model are also reviewed. Section III discusses the nume
issues related to the present phase-field and flow-field ca
lations along with the problem description. Section IV f
cuses on the tip-operating state in a forced flow, and co
parisons of the numerical predictions with the analytical tw
dimensional Oseen-Ivantsov and linearized solvabi
theories for tip growth in an axial flow are made. The sid
branching development due to the introduction of therm
noise is discussed in Sec. V, in which both the wavelen
and amplitude of the sidebranches are studied as a func
of the convection intensity and the thermal noise strength
comparison with the linear WKB theory prediction is al
06160
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made. Finally, some conclusions are drawn from the pres
investigation.

II. PHASE-FIELD MODEL

A. Incorporation of convection

The present approach is based on a methodology de
oped by Beckermannet al. @39# that incorporates melt con
vection phenomenologically in a standard phase-field mo
of solidification with anisotropic surface energy and kinetic
The phase-field equation is unchanged from the purely
fusive case, thus assuming that the phase field is not
vected by the flow and that the phase-transition tempera
does not depend on pressure. A more complete phase-
equation for the convection case, which can be reduced
nonequilibrium form of the Clausius-Clapeyron equatio
has recently been derived by Andersonet al. @41#. For the
present purpose of studying the effects of melt convection
dendritic growth, the pressure dependence of the interf
temperature can safely be neglected. The usual no-slip
dition at a sharp solid-liquid interface is enforced through
varying interfacial force term in the liquid momentum equ
tion in the diffuse interface region. The force term is chos
such that the no-slip condition is accurately reproduced
gardless of the diffuse interface thickness. This is in contr
to previous approaches that treat not only the liquid but a
the solid phase as Newtonian fluids and specify the visco
of the solid phase to be much larger than that of the liq
phase @40,41#. In addition, the results of the asymptot
analysis of Karma and Rappel@4# for the purely diffusive
phase-field model, which extend to the convective c
@39,42#, are exploited to render our computations more e
cient and to investigate the limit of vanishing interface kin
ics ~i.e., local equilibrium at the solid-liquid interface!.

Let c denote the phase field, wherec561 refers to the
bulk solid and liquid phases, respectively. The phase fi
varies smoothly from 1 in the solid to21 in the liquid in a
small but numerically resolvable diffuse interface regio
and the solid/liquid interface is defined by the contourc
50. The anisotropic form of the phase-field equation
given by

t~nW !] tc5“•@W2~nW !¹c#2]cF~c,lu!

1]x@ u“cu2W~nW !]cx
W~nW !#

1]y@ u¹cu2W~nW !]cy
W~nW !# ~1!

and the energy equation, including the advective flux, can
written as

] tu1~12f!VW •“u5D“

2u1] tf, ~2!

wheret is a relaxation time. Botht andW are functions of
the interfacial normalnW in order to account for anisotropi
surface energy and kinetics. The functionF(c,lu)5 f (c)
1lug(c) is a phenomenological free energy, wheref (c)
52c2/21c4/4 is a double-well function andg(c)5c
22c3/31c5/5 is an odd function. The dimensionless tem
peratureu is defined as (T2Tm)/(L/Cp), whereTm is the
1-2
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PHASE-FIELD SIMULATIONS OF DENDRITIC . . . PHYSICAL REVIEW E 63 061601
melting temperature andL andCp are the latent and specifi
heat, respectively. The positive constantl controls the cou-
pling between the temperature field and the phase field.
interface thickness parameterW is assumed to take the form
W(nW )5W0As(nW ), with

As~nW !5~123«!14«~cx
41cy

4!/u“cu4, ~3!

wherecx andcy are first derivatives with respect tox andy,
and « is the anisotropy strength of the surface energy. T
thermal diffusivity is denoted byD, f can be viewed as a
solid fraction that is coupled to the phase fieldc simply by
f5(11c)/2,fP@0,1#, andVW is the intrinsic flow velocity.
From the ‘‘thin-interface’’ limit analysis@4#, we have the
following relations that determine the relaxation timet and
coupling constantl: t5t0@As(nW )#2, l5a1W0 /d0 , where
d0 is the capillary length, anda150.8839 for the functional
forms of f (c) and g(c) given above. Setting the kineti
effect to zero, as explained in Ref.@4#, we have t0
5a1a2(W0)3/(d0D), where a250.6267 for the functional
forms given above. Therefore, onlyW0 is a free paramete
that has to be properly selected to obtain converged s
tions.

The conservation equations for mass and momentum
the following form @39#:

“•@~12f!VW #50, ~4!

] t@~12f!VW #1~12f!VW •“VW

52~12f!“p/r1“•@n“~12f!VW #1MW 1
d ,

~5!

wherep, r, andn are the pressure, density, and kinetic v
cosity of the melt, respectively. The termMW 1

d is a dissipative
interfacial force per unit volume and is modeled as@39#

MW 1
d52n

2hf2~12f!

W0
2 VW , ~6!

where the constanth is found to be 2.757 by an asymptot
analysis of plane flow past the diffuse interface. This te
serves as a distributed momentum sink in the diffuse in
face region that forces the liquid velocity to zero asf→1
and vanishes in the bulk liquid (f50). An important prop-
erty of the interfacial force term is that the velocity profi
smoothly approaches the profile for a sharp interface wit
no-slip condition atf50.5 ~or c50) regardless of the dif-
fuse interface thickness.

B. Incorporation of thermal noise

Methods to incorporate thermal noise in the phase-fi
model have been developed by Karma and Rappel@43# and
Pavlik and Sekerka@44#. Although some previous phase
field simulations have obtained dendritic sidebranches
resemble those observed in experiments@7#, the sidebranches
are generated by either numerical noise or by randomly d
ing the tip. In the model of Karma and Rappel, thermal no
06160
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is incorporated in a thermodynamically consistent man
using the Langevin formalism. Karma@45# has analyzed us
ing a sharp-interface model the issue of the relative imp
tance of the bulk and interface noises. He concluded that
interface noise drives short-wavelength interfacial fluctu
tions that are not selectively amplified by the morphologi
instability along the sides of dendrites for materials with re
sonably fast attachment kinetics. This prediction was c
firmed by phase-field simulations of dendritic sidebranch
in two dimensions by Karma and Rappel@43#, who found
that the sidebranching activity remained quantitatively u
changed when phase-field simulations were carried out w
~i! both the interface and bulk noises, and~ii ! with only the
latter. As a result, only the conserved bulk noise is cons
ered here.

The conserved bulk noise is added to the energy con
vation equation in the following manner:

] tu1~12f!~VW •“u5D“

2u1] tf2“•qW , ~7!

where qW stands for the thermal noise vector, obeying
Gaussian distribution with a variance,

^qm~rW,t !qn~rW8,t8!&52DkB

CpTM
2

L2 dmnd~rW2rW8!d~ t2t8!,

~8!

wherekB is the Boltzmann constant andd is the delta func-
tion. It is helpful to express the governing equations in
dimensionless form that minimizes the number of compu
tional parameters, and also renders the interpretation of
noise magnitude more transparent. UsingW0 as a length
scale andt0 as a time scale, all dimensional variables a
cast into their dimensionless form asrW/W0→rW, t/t→t,
Vt0 /W0→V, Dt0 /(W0)2→D, nt0 /(W0)2→n, (p/r)(t0 /
W0)2→(p/r), andqW t0 /W0→qW , while W0 andt0 are set to
unity. The dimensionless variance of the thermal noise v
tor is then given by

^qm~rW,t !qn~rW8,t8!&52DFudmnd~rW2rW8!d~ t2t8!, ~9!

whereFu is the magnitude of the thermal noise defined a

Fu5
kBTM

2 Cp

L2W0
d 5

kBTM
2 Cp

L2d0
d S d0

W0
D d

[FexS d0

W0
D d

~10!

and d is the dimension. In three dimensions,Fex represents
the magnitude of the thermal noise existing in experimen
The mean-square fluctuation of the temperature in a volu
DV is given by^DT2&5kBTM

2 /(CpDV), a fixed quantity for
a given material. Therefore, physicallyFex can be interpreted
as the mean-square fluctuation ofu inside the microscopic
volume (d0)3. In the present two-dimensional simulation
Eq. ~10! requires for dimensional reasonsL andCp to be the
latent heat of melting and the specific heat at constant p
sureper unit area, respectively. These quantities, howeve
are only experimentally meaningful quantities when defin
per unit volume in three dimensions. Thus, in two dime
sions,Fex can be treated as a free parameter whose valu
chosen such that sidebranches form at a distance from th
1-3
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comparable to experiment. Equation~10! then dictates how
to chooseFu for a given choice ofFex so as to obtain result
that are independent of interface thickness. Namely, if
chooses the computational parameter (d0 /W0) to be small
compared to unity, which is the main gain in computation
efficiency resulting from the reformulated asymptotics
Ref. @4#, then one must scale down the magnitude of noise
the phase-field model,Fu , to keep the fluctuation strengt
Fex constant. The main practical conclusion here is that
still has the computational freedom to choose the interf
thickness if one rescales appropriately the noise strengthFu .

Because they are restricted to two dimensions, the pre
simulations are insufficient to address the issue of whe
the strength of thermal noise present in an experimen
sufficient to produce the observed sidebranching activ
They are well suited, however, to shed light on the nontriv
effect of fluid flow on this activity and to make contact wi
existing sharp-interface WKB analyses of noise-induc
sidebranching.

III. PROBLEM DESCRIPTION AND NUMERICAL
PROCEDURES

The model described in the preceding section is use
numerically simulate the growth of a single dendritic crys
in a uniform forced flow. An externally forced flow was als
employed in the growth experiments of Refs.@11–14#,
whereas the flow in other experiments@7# was buoyancy-
driven. A forced flow allows for the control of the flow ve
locity independent of the imposed supercooling. A dire
comparison of the present simulations with the forced fl
experiments is, however, not possible because the sim
tions are limited, for computational reasons, to two dime
sions and relatively large dimensionless supercoolings~see
below!. Instead, we focus on quantitative comparisons w
analytical theories. Microscopic solvability theories of de
dritic growth with melt flow are presently available only fo
forced convection in two dimensions.

The simulation domain is schematically illustrated in F
1. A circular seed exists initially at the center of the squ
domain. The crystal axes are aligned with the coordin
axes, unless otherwise noted. Supercooled melt enters
domain from the top boundary with a uniform velocityU,
and exits at the bottom boundary. Periodic boundary con
tions are imposed on the vertical side boundaries of the
main. The initial conditions are as follows: the initial velo
ity field is taken to be that for steady flow around the se
and the inlet and initial melt temperature~dimensionless! are
both set to2D ~supercooling!, except inside the seed whe
the dimensionless temperature is zero~at the melting point!.
Due to the symmetry of the problem with respect to t
vertical axis, simulations are carried out on only half of t
domain, and the results are simply mirrored to the other h

The mass and momentum equations are solved num
cally using the multigridSIMPLE method@46,47# on a uni-
form, square grid pattern. Compared to single grid metho
the multigrid method provides much stronger coupling b
tween the pressure and velocity fields, and therefore is
tremely efficient and robust when used on a highly refin
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grid space. The solution is first obtained on the coarsest
using the standardSIMPLE algorithm@48#. It is then extrapo-
lated to the next finer grid and serves as the starting solut
The solution on the second grid level is obtained using
striction and prolongation cycles@47#. This procedure con-
tinues until the solution on the finest grid level is obtaine
For the results reported in this paper, we have used eigh
nine grid levels. For example, starting from 5310 control
volumes~CV’s!, the second grid level has 10320 CV’s and
the eighth grid level has 64031280 CV’s. The phase-field
and energy equations were solved only on the finest g
level using an explicit Euler scheme. To take advantage
the implicit nature of theSIMPLE algorithm for the flow-field
calculations, we developed a multiple time-step algorith
that uses a larger time step for the flow-field calculatio
while reserving a fine time step for the phase- a
temperature-field calculations. The former is typically o
order of magnitude larger than the latter, resulting in
roughly 60% reduction in computational time compared
using a single time step for all variables. The error in the
velocities and radii due to this multiple time-step algorith
was found to be negligibly small. The tip radii are evaluat
from the computed phase-field contours using the met
explained in Ref.@4#. Finally, the generation and discretiza
tion of the conserved noise are accomplished following
actly the same procedure as Karma and Rappel in t
phase-field simulations of dendritic sidebranching witho
flow, which is described in detail in@43#.

The ranges of the governing dimensionless parame
~supercooling D, anisotropy strength«, flow velocity
Ud0 /D, and Prandtl number Pr5n/D) considered in the
present numerical simulations are strongly limited by t
available computer time and memory. Since a uniform g
is used, the parameters need to be chosen such that the
perature and velocity gradients around the dendrite are
commodated in a relatively small domain in order to avo
an excessive number of grid points. Simulations are p
formed for dimensionless supercoolingsD of 0.45 and 0.55
and anisotropy strengths« ranging from 0.01 to 0.05. As

FIG. 1. Phase-field simulation domain and boundary conditio
1-4
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PHASE-FIELD SIMULATIONS OF DENDRITIC . . . PHYSICAL REVIEW E 63 061601
shown in previous studies that do not consider flow@4,5#,
these parameters allow for the choice of a relatively sm
domain size, while still accommodating the thermal diffusi
layer around the growing dendrite. In other words, witho
flow, the simulation domain is chosen large enough that
dendrite tips grow in a steady state after the initial transi
without being affected by the boundaries. With flow, t
thermal boundary layers in front of the upward and horizo
tally growing dendrite tips~see Fig. 1! can be expected to b
smaller than in the diffusion case. The thermal wake beh
~downstream of! the crystal can become quite large, depen
ing on the flow velocity. However, the dendrite tip in th
wake grows much slower than the other ones~see below!,
and the thermal field is still accommodated within the d
main since the crystal is placed in the center. The flow
locity is chosen small enough that the Reynolds numbe
less than unity. This is important for the comparison of t
results with theory, as shown below. It also results in a m
simple flow pattern and limits the size of the wake region
was verified that the velocity gradients across the low
boundary~exit! are small. The Prandtl number is chosen
be equal to 23.1 in all simulations. This value is represen
tive of SCN, a substance commonly used in dendrite gro
experiments@7,13,14#. With the ratio of the velocity to ther-
mal boundary-layer thickness approximately equal
Pr1/352.8, the velocity boundary layer for the upstrea
growing dendrite arm is still accommodated within the d
main, and the upstream tip grows in a steady fashion with
being affected by the boundaries. As the length of the h
zontal dendrite arms increases, their growth may be in
enced by the lateral boundaries, because the flow needs
accommodated in the increasingly smaller gap between
dendrite tip and the side boundary. However, the results
low show that this effect is relatively small, and the horizo
tal dendrite arms can grow with a relatively constant tip v
locity for some time. Nonetheless, the results for t
horizontal and downstream dendrite arms are not analyze
much detail.

For steady diffusion-controlled growth (U50) in two di-
mensions, it is possible to quantitatively benchmark
phase-field simulations using the results of microscopic s
ability theory. Table I shows the present simulation resu
for the steady-state dendrite tip velocities and radii at a
percooling ofD50.55 and three values of the anisotro
strength—«50.01, 0.03, and 0.05—along with the predi
tions of microscopic solvability theory for each case. In t
table, decreasing the dimensionless thermal diffusivityD,
and thus decreasing the coupling constantl, is equivalent to
decreasing the interfacial thickness. It can be seen that
phase-field results are independent of interface thickness
that quantitative agreement with the benchmark solution
been achieved.

We also numerically examined the effect of grid anis
ropy by rotating the principal growth directions of a dendr
by 45°, which represents the worst scenario of grid anis
ropy. For a supercooling ofD50.55 and an anisotropy
strength of «50.05, we found that the steady-state
growth velocity for the rotated case is about 4.7% lower th
for the base case. Karma and Rappel@43# proposed a method
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to correct for the grid anisotropy effect numerically. For e
ample, for the grid spacing ofDx/W050.4 that we have used
in this study, the correction to the anisotropy strength
(Dx)2/240>6.731024, which is small compared to the
nominal anisotropy strength of 0.01–0.05, so no correctio
needed here. However, for a larger grid spacing, the cor
tion will become important.

IV. TIP GROWTH

A. Convection-controlled growth

Although many theories have been proposed to acco
for the effect of convection on dendritic growth, these the
ries are not rigorous because they usually prescribe a
shape. No exact solution exists for the selection of the
operating state~velocity and radius! in the presence of flow.
It is thus impossible to directly benchmark our numeric
results, as we did for purely diffusive growth. However, t
accuracy of our phase-field simulations with flow can still
established by examining their convergence behavior in
thin-interface limit. Table II summarizes the results of co
vergence tests for two values of the anisotropy strength.
upstream tip velocities and radii are presented for decrea
values of the diffuse interface thickness, i.e., decreasing
mensionless diffusivityD in the limit of vanishing interface
kinetics, and for different grid sizes. For each anisotro
converged results are obtained.

For a fixed supercooling of 0.55, Fig. 2 illustrates t
computed evolution of the dendrites for three different a
isotropy strengths («50.01, 0.03, and 0.05! without flow
~top panels! and with flow ~bottom panels!. For the bottom
panels, the input parameters also include the flow velo

TABLE I. Phase-field simulation of dendritic growth withou
convection: numerical results for different diffuse interface thic
nesses versus microscopic solvability theory~exact! predictions for
D50.55. In the simulations, grid numbers areNx5640 andNy

51280, dimensionless spacingDx/W050.4.

D d0 /W0 Vd0 /D r/d0 s*

«55%
4 0.139 0.0171 6.83 2.51
3 0.185 0.0175 6.02 3.15
2 0.277 0.0180 5.76 3.35

exact 0.0170 6.41 2.86

«53%
4 0.139 0.0112 25.9 0.27
3 0.185 0.0120 24.0 0.29
2 0.277 0.0110 21.7 0.38

exact 0.0111 23.3 0.33

«51%
6 0.0923 0.0036 132.2 0.032
5 0.1108 0.0041 119.0 0.034
4 0.139 0.0040 119.2 0.035
3 0.185 0.0042 117.0 0.035

exact 0.0034 129.6 0.035
1-5
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TABLE II. Convergence study of dendritic growth with flow: results for the upstream tip steady-state velocityV and radiusr for different
grids and diffuse interface thicknesses. In the simulations, the following parameters were held constant: supercoolingD50.55, Prandtl
number Pr523.1, andDx/W050.4. TCPU denotes the CPU time in hours on a HP C200 workstation;Nx andNy are the number of contro
volumes in thex andy directions, respectively.

« Ud0 /D D d0 /W0 Nx Ny Vd0 /D r/d0 TCPU

0.03 0.135 3 0.185 640 1280 0.0288 16.8 45
0.03 0.135 2 0.277 640 1280 0.0296 15.5 60
0.03 0.135 1 0.554 1024 2048 0.0303 14.7 150
0.03 0.135 2 0.277 1024 2048 0.0286 14.9 120
0.05 0.035 4 0.139 160 320 0.0265 8.10 3
0.05 0.035 4 0.139 288 576 0.0240 7.51 8
0.05 0.035 4 0.139 576 1152 0.0244 7.46 31
0.05 0.035 3 0.185 320 640 0.0248 7.48 17
0.05 0.035 2 0.277 512 1024 0.0247 7.61 70
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Ud0 /D50.07 and the Prandtl number Pr5n/D523.1.
These calculations were performed on a grid of 3
3640 CV’s with a uniform spacing ofDx/W050.4. For bet-
ter visualization, we have interpolated the flow field onto
grid that is about 60 times coarser than the one used in
computations. It can be seen that the shape of the dendrit
significantly influenced by the flow. The growth velocities
the upstream tips are much higher than those of the do
stream tips and the tips normal to the flow, because the
pinging flow reduces the thermal boundary-layer thickn
on the upstream side. The evolution of the downstream
in the wake of the dendrite is retarded relative to even
diffusion case, because of advection of heat from the
stream portion of the dendrite. An interesting observation
that the horizontal tips grow slightly upwards. This dendr
‘‘tilting’’ is due to the asymmetry of the heat fluxes on th
upper and lower sides of the horizontal arm.

Figure 3~a! shows the evolution of all tip velocities~up-
stream, normal to flow, and downstream! for the following
example: D50.55, «50.03, Ud0 /D50.135, and Pr
523.1. For comparison, the value of the steady growth

FIG. 2. Evolution of phase-field contours for a dendrite growi
at D50.55 and«50.01, 0.03, and 0.05~from left to right! without
convection~top panels! and with convection~bottom panels! for a
flow velocity of Ud0 /D50.7 and a Prandtl number of Pr523.1
(3203640 CV’s with a uniform spacing ofDx/W050.4).
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locity in the absence of flow is also plotted. All tip velocitie
start from a large value before leveling off. This initial d
crease is simply caused by the initial conditions. The u
stream tip eventually reaches a steady state with a gro
speed that is about 160% higher than the value in the abs
of flow. The tip that grows in a horizontal direction norm
to the flow appears to slow down even after a long tim
although the decrease after aboutt/t5400 is very small. The
average growth speed for 800,t/t,1000 is only about 20%
higher than the pure diffusion value. Note that the flow p
the horizontal tip continually accelerates because the i
mass flow rate has to be accommodated in an increasi
smaller gap between the tip and the side boundary.
downstream tip also does not reach a complete steady
due to the ever-increasing size of the dendrite, but a sim
average shows that its speed is approximately 45% lo
than without flow. Figure 3~b! shows the evolution of the tip
radii corresponding to the conditions of Fig. 3~a!. Again the
upstream tip reaches a steady-state radius~about 35% lower
than the no-flow value!, while the other tips continue to
evolve slowly.

The knowledge of the tip velocity and radius allows f
the calculation of two important parameters in dendri
growth: the tip growth Peclet number, Pe[Vr/(2D), and
the selection constant,s* , defined byr2V[2d0D/s* . For
the example shown in Fig. 3, we find Pe>0.21,s* >0.30 for
the upstream tip; Pe>0.14,s* >0.36 for the tip normal to the
flow; and Pe>0.09,s* >0.38 for the downstream tip. For th
same supercooling and anisotropy strength but without fl
we have Pe>0.12,s* >0.39. The differences in the Pecle
numbers simply reflect the effect of the flow on the he
transfer at the differently oriented tips. The fact that the co
vection value ofs* for the horizontally growing tip is close
to the diffusion value is in agreement with the experime
of Bouissouet al. @11#, who found thats* does not depend
on the transverse component of the flow. The fact that
downstream tip also has as* value close to the diffusion
value may be explained by the relative weakness of the fl
in the wake region of the dendrite. On the other hand,
upstream tip for the example of Fig. 3 has as* value that is
significantly different from the no-flow case. This issue
1-6
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PHASE-FIELD SIMULATIONS OF DENDRITIC . . . PHYSICAL REVIEW E 63 061601
investigated in more detail in the following by comparing t
present results for the upstream tip to the linearized solva
ity theory of Bouissou and Pelce@23# for dendrite growth
with a uniform axial flow from a direction opposite to th
growth direction.

B. Comparison with linearized solvability theory

Bouissou and Pelce@23# studied theoretically the effect o
a forced flow on the operating state of a dendrite tip in t
dimensions. Their theory consists of two parts: the h
transport solution and the linearized solvability analysis. T
flow is assumed to be in the small Reynolds number reg
where the Oseen flow approximation is valid. In that regim
the nonlinear convective terms in the Navier-Stokes eq
tions can be linearized to yield the well-known Oseen eq
tions. By assuming the dendrite tip shape to be parabolic
the surface energy to be negligible, they obtained a relat
ship between the growth Peclet number (Pec), flow Peclet
number (Pef), and the supercooling~D!,

FIG. 3. The operating state of dendrite tips in a forced flow
the case ofD50.55, «50.03, Ud0 /D50.135, and Pr523.1. ~a!
Evolution of dendrite tip velocities;~b! evolution of dendrite tip
radii.
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D5Pec exp~Pec2Pef !E
1

` dh

Ah

3H 2Pech1PefS 21E
1

h g~z!

Az
dz2h D J , ~11!

where Pef[Ur/(2D) is the flow Peclet number, and th
subscriptc on the growth Peclet number serves to distingu
it from the Peclet number obtained from simulation. T
function g(z) is defined as

g~z!5Az
erfc~ARez/2!

erfc~ARe/2!
1

A2/~p Re!

erfc~ARe/2!
$exp~2Re/2!

2exp~2Rez/2!%, ~12!

where Re[Ur/n52 Pef /Pr is the Reynolds number. It is im
portant to note that Eqs.~11! and ~12! apply only to the
upstream tip in the present simulations. The relationshipD
5D(Pec ,Pef) reduces to the well-known two-dimension
Ivantsov solution in the absence of flow (Pef50). A heat
transport solution of the same type, although written in
different form, has also been derived by Ananth and G
@19#.

The upstream tip Peclet numbers extracted from the si
lations are compared to the predicted values (Pec) from the
Oseen-Ivantsov relation@Eq. ~11!# in Fig. 4 for D50.55, Pr
523.1, with Pef ranging from 0 to 1(Re,0.1), and three
anisotropy strengths («50.01, 0.03, and 0.05!. While the
Peclet numbers increase with increasing flow velocity,
ones from the simulations are significantly below the pred
tions from the Oseen-Ivantsov relation, with the gap betwe

r

FIG. 4. Variations of the growth Peclet number with the flo
Peclet number, and comparison with the two-dimensional Ose
Ivantsov solution~solid line! for D50.55 and Pr523.1. Both the
growth and flow Peclet numbers are evaluated using the actua
radiusr for the open symbols and dashed lines, and the radiusrp

based on the parabolic fit for the solid symbols.
1-7
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X. TONG, C. BECKERMANN, A. KARMA, AND Q. LI PHYSICAL REVIEW E63 061601
simulation and theory increasing with«. This gap has been
observed previously in a purely diffusive regime@4,36#. It is
due to the fact that the interface shape deviates from a
rabola close to the tip, with this deviation increasing stee
with anisotropy strength.

The phase-field calculations enable us to quantitativ
examine the deviation of the computed tip shape from
parabolic shape assumed in the theory. A parabola ca
expressed as

x2522r0z or ~x/r0!2522z/r0 , ~13!

where the origin of the coordinates (x-z) is located at the tip,
with the z axis pointing at the growth direction of the de
drite and thex axis perpendicular to the growth axis, andr0
is the tip radius of the parabola. The curvature of the
rabola varies withx as

k

k0
5

1

@11~x/r0!2#3/2, ~14!

wherek051/r0 is the curvature of the tip. Figure 5 shows
comparison of the curvature variation of the parabola fr
Eq. ~14! with the curvatures measured from phase-fi
simulations in the absence of convection for three anisotr
strengths~0.01, 0.03, and 0.05!. It is seen that for«50.05,
the curvature at the tip (x/r50) is almost four times large
than that of a parabola. However, for the lowest anisotro
~0.01!, the tip shape is reasonably close to a parabola.
curvatures become almost identical after aboutx/r51.5.
This implies that the anisotropy influences the dendrite sh
only in the region very close to the tip. Farther away fro
the tip, the interface shape is accurately fitted by a parab
z52x2/2rp .

FIG. 5. Curvature variation along a needle crystal as a func
of surface energy anisotropy~zero anisotropy represents th
Ivantsov parabola!.
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Consequently, in order to meaningfully compare our
sults to the predictions of the Oseen-Ivantsov relation, wh
is based on a parabolic tip shape, we must use the fi
radiusrp instead of the actual radiusr when calculating the
tip Peclet number for our simulations. For this purpose,
extracted the parabolic tip radius,rp , by measuring the slope
of z versusx2 in the region of the simulated interfaces behi
the tip where this plot becomes a straight line. Note thatrp is
likely to be the experimentally measured tip radius sinc
parabolic fit of the tip shape has been traditionally used
extract this parameter, even though it does not correspon
the actual tip radius. Usingrp and the tip velocityV from
our simulations, we calculated a parabolic Peclet numb
Pep5Vrp/2D, and for later use the parabolic selection p
rameter, (s* )p52Dd0 /(rp

2V). As opposed to Pe, Pep is in
good agreement with Pec predicted from Eq.~12! for all flow
and anisotropy strengths, as shown in Fig. 4.

The linear solvability analysis by Bouissou and Pelce@23#
reveals that the ratio of the selection parameters without fl
and with flow is a function of a dimensionless flow param
eterx,

x5a~Re!d0U/~b3/4rV!, ~15!

whereb515« anda(Re) is given by

a~Re!5A2 Re/p exp~2Re/2!/erfc~ARe/2!. ~16!

For x.xc , where xc is a critical threshold value much
larger than unity, the following asymptotic form holds:

~s* !0 /s* >11bx11/14, ~17!

where (s* )0 is the selection parameter without flow andb is
a constant. Forx smaller than unity, which is the case in th
present simulations, the ratio of selection parameters is in
pendent of the flow parameter, i.e.,

~s* !0 /s* >1. ~18!

We verified and refined the latter prediction by numerica
evaluating the complex solvability integral derived by Bo
issou and Pelce@23#, and found that the ratio increases b
about 1% over the range of 0,x,0.2, which corresponds to
the present simulations. Physically, the analysis of Bouis
and Pelce implies that flow has an effect on the tip-selec
parameter only if (d0U)/(rV)5Pefs* is of the order of
unity or greater.

Figure 6 shows that the ratio (sp* )0 /(sp* ) of parabolic
selection parameters without and with flow is indeed nea
independent of the flow parameter for all« andD, in agree-
ment with the linear solvability theory prediction. The app
cability of this theory, which assumes a purely parabolic t
may seem surprising. We note, however, that this nontriv
feature of the linearized solvability theory is already pres
without flow. In this case, the theory predicts reasonably w
the tip velocity over a comparable range of anisotropy
both two@49# and three@50# dimensions despite the presen
of a localized tip distortion that causesr to depart fromrp .
Thus, we can conclude that even in the presence of flow,

n
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PHASE-FIELD SIMULATIONS OF DENDRITIC . . . PHYSICAL REVIEW E 63 061601
distortion does not strongly affect the selection of the
velocity and the two-dimensional parabolic tip shape on
larger scale of ten tip radii.

In contrast, Fig. 6 also shows that the ratio of select
parameters based on the actual tip radius varies by a fact
up to about 2 over the range of flow velocities investigat
even thoughx is small. This result shows that the advecti
of heat by the flow has a strong effect on the portion of
dendrite shape within about one tip radius of the tip, which
controlled in the absence of flow by the balance betw
anisotropic surface tension and diffusion. It is presently
clear why all results for the ratio of selection paramet
based on the actual tip radius, (s* )0 /(s* ), appear to fall

FIG. 6. Variation of the ratio of the selection parameters with
and with flow as a function of the dimensionless flow parametex
and comparison with the linear solvability theory for a parabolic
~the theoretical lines for all three anisotropy strengths coincid!.
Both the ratio of the selection parameters and the flow param
are evaluated using the actual tip radiusr for the open symbols and
the radiusrp based on the parabolic fit for the solid symbols.
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along a single line in Fig. 6. This would indicate thatx
remains a useful scaling parameter even when using the
tual tip radius. Certainly, the variation of (s* )0 /(s* ) in Fig.
6 should not be construed as a test of the solvability re
given by Eq.~17!.

V. SIDEBRANCHING

A. Sidebranching with convection

The flow influences not only the tip-operating state,
discussed in the preceding section, but also the dynamic
dendritic sidebranching. In the following, we will study th
dynamics of sidebranching by presenting simulation res
for different flow velocities, thermal noise strengths, a
flow directions relative to the growth axes. The followin
parameters are held constant: supercoolingD50.55, anisot-
ropy strength«53%, and Prandtl number Pr523.1. Without
flow, the tip-operating state is given byVd0 /D>0.011,
r/d0>21.8, ands* >0.38. All calculations in this section
were performed on a grid of 102432048 CV’s with a uni-
form spacing ofDx/W050.4.

Simulation results for a noise strength ofFu51.25
31024 and a flow velocity ofUd0 /D50.027 are shown in
Fig. 7. For these conditions, the steady-state operating s
of the upstream tip is evaluated asVd0 /D>0.0164,r/d0
>18.5, ands* >0.36. Figure 7~a! shows the computed evo
lution of the phase-field contours from timet/t054500 to
6000, in equal time intervals of 300, together with the velo
ity vectors att/t056000. It can be seen that the upstrea
arm develops numerous sidebranches, whereas the horiz
and downstream arms are just beginning to show insta
ties. Figure 7~b! shows the isotherms att/t055850. The
temperature fluctuations are reflected by the noisiness of
contours. In order to analyze the amplitude and wavelen
of the sidebranches in more detail, the temporal variation
the half-widthx5x(z,t) of the upstream growing dendrit
arm is plotted in Fig. 7~c! for three locations behind the tip
(uzu/r520, 40.5, and 61!. These results are analyzed in th
next section.

t

er
FIG. 7. Dendritic sidebranching in a forced flow (Ud0 /D50.027,Fu51.2531024, Pr523.1,D50.55, and«50.03). ~a! Morphological
development fromt/t054500 to 6000 in equal time intervals of 300;~b! isotherms around the growing dendrite att/t055850; ~c! spectra
of sidebranches at three locations behind the tip.
1-9
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FIG. 8. Dendritic sidebranching in a stronger forced flow (Ud0 /D50.135) compared to Fig. 7.~a! Morphological development a
t/t051050 and 2550 to 3450 in equal time intervals of 300;~b! isotherms around the growing dendrite att/t052850; ~c! spectra of
sidebranches at three locations behind the tip.
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Figure 8 shows simulation results for a case in which
flow velocity is five times larger~i.e., Ud0 /D50.135) than
in the case corresponding to Fig. 7. The phase-field cont
in Fig. 8~a! correspond tot/t051050, 2550, 2850, 3150, an
3450. These times are smaller than in Fig. 7~a! because the
upstream dendrite arm grows much faster, while the size
the computational domain is unchanged. Since the horizo
arms grow at approximately the same velocity in Figs. 7 a
8, they can serve as a convenient length scale when com
ing the two figures.

Figure 9 shows the simulation results for a case in wh
the noise strength was increased by a factor of 4 relativ
the cases of Figs. 7 and 8~to Fu5531024), while the flow
velocity is the same as in Fig. 8. In Fig. 9~a!, the phase-field
contours are plotted fromt/t052400 to 3300, in equal inter
vals of 300. As expected, the amplitude of the sidebranc
on the upstream growing dendrite arm increases substan
compared to Fig. 8. The isotherms shown in Fig. 9~b! for
t/t053300 are also considerably more noisy than in F
8~b!. These results are in qualitative agreement with the
perimental study by Bouissouet al. @30# on pivalic acid
~PVA! dendrites. They found that the amplitude of the sid
branches increases with the amplitude of the external pe
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bations in the ‘‘linear regime’’ close to the tip. A compariso
with noise amplification theory is made in the next sectio

The flow field around a growing two-dimensional, sid
branching dendrite is interesting and deserves further dis
sion. The vector plots of Figs. 7~a!, 8~a!, and 9~a! show the
actual magnitude of the velocities, but are too coarse to
solve all flow patterns. Figure 10 shows an example of co
puted streamlines at two different times. The contours
plotted at unequal intervals in order to illustrate better
weaker flows around the dendrite. At the early time@Fig.
10~a!#, the flow pattern is similar to low Reynolds numb
cross flow around a circular cylinder and there is
boundary-layer separation in the wake region. When the fl
velocity or the dendrite size is large enough, boundary-la
separation occurs in the wake region, as shown in Fig. 10~b!.
Two relatively weak recirculation cells exist on the dow
stream side of the horizontal arms, and the melt actu
flows toward the downward growing tip. This is reflected
the isotherms in Figs. 8~b! and 9~b!, which show an inflec-
tion in front of the downward growing tip.

A direct illustration of the effect of convection on th
upstream growing dendrite arm is provided in Fig. 11, wh
each panel is a snapshot of the phase-field contours of
t

FIG. 9. Dendritic sidebranching with a larger noise strength (Fu5531024) compared to Fig. 8.~a! Morphological development from

t/t052400 to 3300 in equal time intervals of 300;~b! isotherms around the growing dendrite att/t053300; ~c! spectra of sidebranches a
three locations behind the tip.
1-10
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PHASE-FIELD SIMULATIONS OF DENDRITIC . . . PHYSICAL REVIEW E 63 061601
arm during the steady-state growth regime. In both F
11~a! ~upper panels! and 11~b! ~lower panels!, the melt ve-
locity increases fromUd0 /D50 ~purely diffusive! for the
left panel, over 0.027 for the middle panel, to 0.135 for t
right panel. All other parameters, including the noise le
~at Fu51.2531024), are held constant. In Fig. 11~a! ~upper
panels!, the coordinates are unscaled, i.e., the images ar
equal magnification. It can be seen that sidebranching is
hanced with increasing flow velocity, and both the amplitu
and frequency of the sidebranches increase from left to ri
On the other hand, the primary tip radius decreases w
increasing flow velocity. The tip radii (r/d0) are measured
to be 21.8, 18.5, and 14.9 for the flow velocities ofUd0 /D
50, 0.027, and 0.135, respectively, corresponding to

FIG. 10. Flow field around a growing dendrite (Ud0 /D
50.135, Fu51.2531024, Pr523.1, D50.55, and«50.03). ~a!
When the dendrite is small (t/t05900), there is no boundary-laye
separation in the wake region;~b! when the dendrite becomes larg
(t/t053450), two symmetric recirculation cells appear in the wa
region.
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three panels of Fig. 11~a!. Using these tip radii as length
scales to normalize the coordinates, the three panels of
11~a! are replotted in Fig. 11~b!. Other than for the random
nature of the instabilities, the frequency of the sidebranc
now appears virtually the same for all three cases. The s
branch amplitude may be slightly increasing with flow v
locity, but a definite conclusion is difficult to extract from
Fig. 11~b!. The fact that the sidebranch wavelength sca
with the tip radius in the presence of flow is qualitative
consistent with the scaling laŵl&/r5const, wherê l& is
some mean sidebranch wavelength, observed in the clas
experiments of Huang and Glicksman@7#. Although Huang
and Glicksman varied only the supercooling, the melt velo
ties changed substantially in their experiments because
intensity of natural convection changes with supercooling

The effect of different thermal noise strengths in the pr
ence of flow is examined in more detail in Fig. 12, whic
shows snapshots of upstream growing arms similar to F
11. The higher noise level (531024, right panel! clearly
results in a larger sidebranch amplitude compared to
lower noise level (1.2531024, left panel!. However, the
wavelength of the sidebranches appears to be unchan
This observation is consistent with classical noise amplifi
tion theory. A more quantitative comparison with line
WKB theory is presented in the next section.

In order to investigate the influence of the flow directio
relative to the growth direction on the dynamics of dendri
sidebranching, we performed a simulation in which the cr
tal axes are set at an angle of 45° with respect to the fl
Figure 13 shows the computed phase-field contour att/t0
53540 for a noise strength ofFu51.2531024 and a flow
velocity of Ud0 /D50.135. A simulation result withou
noise~dotted line in Fig. 13! is also included for comparison
Under these conditions, the steady-state operating state
the dendrite arm growing into the upper right corner is giv
by Vd0 /D>0.023,r/d0>15.5, ands* >0.36. It can be seen
from Fig. 13 that the shape and sidebranching behaviors
significantly influenced by the flow direction. Compared
an upstream arm growing directly into the flow@Fig. 8~a!#,
the growth of the 45° arm demonstrates a strong asymme
behavior. The sidebranching is much more developed on
upper side than on the lower side of the arm. An asymme
behavior can also be observed in the no-noise case~dashed
line!, where the growth is promoted on the upper side by
flow while it is suppressed on the lower side. This results
an asymmetric needle crystal with the upper half of the cr
tal ~divided by the growth axis! much wider than the lower
half of the crystal. Obviously, this asymmetry is caused
the flow inducing a higher heat flux on the upper side of
dendrite arm and advecting heat around the arm that s
presses growth on the lower side. The asymmetry in
growth results in a slight dendrite ‘‘tilting’’ phenomenon fo
the 45° growing arm. Att/t053540 ~Fig. 13!, the growth
axis, defined as a straight line between the center of
crystal and the tip of the arm, is at an angle of 42.5° w
respect to the vertical, indicating a 2.5° upward tilt.

B. Comparison with linear WKB theory

Figures 7~c!, 8~c!, and 9~c! show the numerically calcu
lated temporal variation of the half-width of the upstrea
1-11
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FIG. 11. Effect of flow on den-
dritic sidebranching.~a! Unscaled
snapshots of the upstream grow
ing dendrite arm;~b! snapshots of
the upstream growing dendrit
arm scaled with the tip radius
From left to right, flow velocity is
increased fromUd0 /D50.0 and
0.027 to 0.135. Other input pa
rameters are kept constant atD
50.55, «50.03, Pr523.1, and
Fu51.2531024.
the
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am-
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FIG. 12. Snapshots of the upstream growing dendrite arm at
noise levels,Fu51.2531024 and 531024. Other input parameters
are kept constant atUd0 /D50.135, Pr523.1, D50.55, Pr523.1,
and«50.03.
06160
growing dendrite arm at several fixed positions behind
tip. Each oscillation corresponds to a sidebranch passing
the observation point. Statistical analysis of the spectra
these figures yields two quantities, the root-mean-square
plitude A and the mean wavelength^l& as a function of dis-
tancez from the tip, that can be compared to theory. T
root-mean-square amplitudeA(z) is defined as@43#

A~z!5A^@x~z,t !2x0~z!#2&, ~19!

wherex0(z) is the steady-state position of the interface in t
absence of thermal noise, which was obtained by tim
averaging the spectrumx(z,t) shown in Figs. 7~c!, 8~c!, and
9~c!. The mean wavelengtĥl& is defined as

^l~z!&52V~ t22t1!/N~z!, ~20!

whereN(z) refers to the number of extrema ofx(z,t) in a
time interval@ t1 ,t2#. Equations~19! and ~20! allow for the

o
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PHASE-FIELD SIMULATIONS OF DENDRITIC . . . PHYSICAL REVIEW E 63 061601
measurement of the amplitudes and wavelengths from
phase-field results with thermal noise at various distan
from the tip.

Langer @27# and Brener and Temkin@28# have theoreti-
cally analyzed noise-induced sidebranching for spec
three-dimensional needle crystal shapes~a parabola of revo-
lution, x0;z1/2, and a nonaxisymmetric dendrite with
power law for the ridges,x0;z3/5, respectively! using the
WKB approximation. Good agreement with experimen
data on the growth of dendrite sidebranches was found
the nonaxisymmetric needle crystal shape of Brener
Temkin. Karma and Rappel@43# have extended the abov
analyses to arbitrary needle crystal shapesx5x0(z) in two or
three dimensions, allowing for a direct comparison with t
phase-field results using computed noiseless inter
shapes. By considering the stability analysis of Bouissou
Pelce@23#, we found that the WKB sidebranching relation
derived by Karma and Rappel@43# remain unchanged in th
presence of an external axial flow. This can be seen from
dispersion relation provided as Eq.~30! in Ref. @23#, where
the term accounting for the modification of the advection
the perturbations along the crystal by the external flow
proportional to the cosine of the angle between the norma
the interface and the growth axis. Since this angle is clos
90° far from the tip in the region where sidebranching tak
place, the flow effect becomes negligibly small. Therefo

FIG. 13. Sidebranching for a dendrite with the crystal axes
ented at 45° with respect to the flow att/t053540 (Ud0 /D
50.135,Fu51.2531024, Pr523.1, D50.55, and«50.03). The
dotted line represents the corresponding needle crystal obtaine
phase-field simulation without noise. The growth axis of the a
growing into the upper right corner~dotted-dashed line! is at an
angle of 42.5° with respect to the vertical.
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the final expressions for the sidebranch amplitude and wa
length variations with distance from the tip valid both wi
and without flow are given, respectively, by

A~z!

r
5S̄expF2

3 S x̄0
3

3s* z̄D
1/2G , ~21!

^l~z!&
r

5pF12s* z̄

x̄0
G1/2

, ~22!

where x̄05x0 /r and z̄52z/r are the coordinates of th
needle crystal scaled with the tip radius. The quantityS̄ de-
notes the dimensionless amplitude of the thermal noise,
is given by@43#

S̄25
2FuD

r11dV
5

2Fu

d̃0
dr̃11dṼ

, ~23!

whered52 for two dimensions andd53 for three dimen-
sions,Ṽ5Vd0 /D, r̃5r/d0 , andd̃05d0 /W0 .

The WKB predictions for the sidebranch amplitude a
wavelength variations are obtained by substituting the m
shapex0(z), as well as the tip radiusr and selection param
eter s* , measured from the phase-field simulation resu
into Eqs.~21!–~23!. Here, we use the actual tip radius, in
stead of the parabolic tip radius in the above equations. S
the tip radius cancels out in the exponent of Eq.~21!, and it
also cancels out in Eq.~22!, this is of no consequence othe
than for the prefactor of Eq.~21! @see Eq.~23!#. It can be
argued that the use of the actual tip radius in the prefacto
physically more meaningful, since Eq.~21! calculates the
amplification of the noise originating at the very dendrite t
More importantly, it should be emphasized that the prefac
of Eq. ~21!, S̄, is only known up to some dimensionles

FIG. 14. Calculated sidebranch amplitudes for the upstre
growing dendrite arm without and with flow (Ud0 /D50.135) and
two noise strengths (Fu51.2531024 and 531024) as a function
of distance behind the tip forD50.55,«50.03, and Pr523.1. The
corresponding WKB predictions are plotted as different lines.
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multiplicative constant of order unity@27#. For a weak an-
isotropy, and thus smalls* , the sidebranching amplitude i
dominated by the exponential amplification factor on t
right-hand side of Eq.~21!, and thus the distance behind th
tip at which sidebranches first become visible@say, where
A(z)/r;0.1 @27## does not depend sensitively on the prec
value ofS̄. Here, however, the anisotropy is relatively lar
and s* is itself of order unity. Thus, this distance depen
more sensitively on the precise value ofS̄. Consequently,
what is more relevant in the comparison shown next is
relative magnitudes of the sidebranching amplitudes in sim
lation and theory, rather than their exact agreement. Sim
tions for weaker anisotropies of 1% or less would be m
appropriate for a precise quantitative comparison with W
predictions but are comparatively much more costly. Th
remain an interesting prospect for the future.

Figure 14 shows a comparison of the phase-field res
~symbols! with the WKB predictions~lines! for the variation
of the scaled sidebranch amplitude as a function of dim
sionless distance behind the tip for two noise streng
(1.2531024 and 531024). In addition to the phase-field
results with flow from Figs. 8~c! and 9~c!, data are included
for a simulation without flow and the lower noise streng
As expected, the sidebranch amplitudes increase with
creasing distance from the tip, and the higher noise stren
results in larger amplitudes. For a given noise strength,
scaled amplitudes with flow are larger than without flow~the
WKB prediction without flow for the higher noise streng
can be obtained from Fig. 14 by simply multiplying the n
flow amplitudes shown for the lower noise strength by
factor of 2!. Even though the form of the WKB relation fo
the amplitude variation, Eq.~21!, remains unchanged in th
presence of flow, flow affects the predicted scaled sidebra
amplitudes because it changes the tip-operating param
(V, r, ands* ) used in that equation. These changes in
tip-operating parameters explain the scaled amplitudes

FIG. 15. Calculated sidebranch amplitudes for the upper
lower sides of the 45° growing dendrite arm (Ud0 /D50.135,Fu

51.2531024, Pr523.1, D50.55, and«50.03) as a function of
distance behind the tip. The corresponding WKB predictions
plotted as different lines.
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are larger with flow than without. If instead of the actual t
radius, the parabolic tip radius and selection parameter w
used in Eq.~21!, flow would still affect the predicted ampli
tudes through the explicit appearance of the tip radius in
dimensionless noise amplitudeS̄ ~note that, while the para
bolic selection parameter is the same with and without flo
as shown in the preceding section, the parabolic tip rad
changes with flow!. Overall, the scaled amplitudes obtaine
from the various phase-field simulations with and witho
flow are in qualitative agreement with the corresponding p
dictions from the WKB theory. A more quantitative compa
son is not possible due to the above-mentioned uncertain
S̄. In fact, the excellent agreement for the no-flow case
Fig. 14 may be coincidental.

We have also applied the WKB theory to explain t
asymmetrical sidebranch amplitudes on the upstream~upper!
and downstream~lower! sides of a dendrite arm growing a
an angle with respect to the flow. The measured sidebra
amplitudes on both sides of the 45° growing dendrite a
shown in Fig. 13 are plotted in Fig. 15 together with t
corresponding WKB predictions. The WKB predictions su
port the observation from the phase-field simulation that
amplitudes are larger on the upper side than on the lo
side. Since the same dendrite tip parameters (V, r, ands* )
are used in Eq.~21! for both sides, the difference in th
amplitudes must be due to the different mean interfa
shapes of the upper and lower sides of the 45° growing d
drite. Since the upper side of the arm is wider than the low
side~where the widthx̄0 is the distance between the grow
axis and the noiseless interface in Fig. 13!, Eq. ~21! predicts
larger amplitudes on the upper side than on the lower s
Even though the asymmetry in the mean shape between
upper and lower sides is relatively small, the fact thatA(z)
;exp(x̄0

3/2) for a parabola results in large differences in t

d

e

FIG. 16. Calculated mean sidebranch wavelengths for the
stream growing dendrite arm as a function of distance behind the
for different flow velocities (Ud0 /D50 and 0.135!, different noise
strengths (Fu51.2531024 and 531024), and Pr523.1, D
50.55, and«50.03. The corresponding WKB predictions are plo
ted as different lines.
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amplitudes. This sensitivity of the sidebranch amplitudes
the mean shape has been emphasized by Brener and Te
@28#. It should be noted that Eq.~21! is strictly not valid for
the dendrite arm growing at an angle with respect to
flow. Since the flow is no longer in an axial direction, i
effect on the advection of the perturbations along the cry
may no longer be negligibly small. Solvability and WK
sidebranching theories for the case in which the dend
growth axis and the flow are not aligned are presently
available.

Numerical and theoretical results for the variation of t
sidebranch wavelength with distance behind the tip are c
pared in Fig. 16. As expected from WKB theory, Eq.~22!,
the scaled wavelengths increase with distance behind th
and are independent of the noise strength~to within the ac-
curacy of the computed results!. The scaled wavelength
measured from the phase-field simulations~symbols! are vir-
tually the same with and without flow, which is qualitative
apparent also from Fig. 11. This relative independence of
scaled wavelengths on the flow strength is supported by
corresponding WKB predictions shown in Fig. 16~lines!.
The WKB predictions with flow are only slightly below th
one without flow, the difference being primarily due to th
fact thats* is somewhat smaller with flow than without.
would be of interest also to compare the wavelengths
larger values of the flow parameterx, where the ratio of
selection parameters without to with flow becomes lar
~Fig. 6!. Figure 16 also shows that the phase-field res
agree only roughly with the WKB theory for the waveleng
variation, Eq.~22!, and a relatively large disagreement exis
close to the dendrite tip, even without flow. Karma and R
pel @43# have found that, in this case, the agreement betw
theory and numerical results could be improved in that
gion by incorporating the additional effect of the stretchi
of the wavelength of perturbations as they migrate from
tip to the sides. We suspect that the same effect is res
sible here for the disagreement between simulations and
WKB theory, with flow.

VI. CONCLUSIONS

The effects of melt flow on the growth velocity, shap
and sidebranching dynamics of single dendritic cryst
growing into a supercooled melt are quantitatively inves
gated in two dimensions using the phase-field method.
numerical results show that the flow causes the dend
crystal to assume a highly asymmetric shape, which can
attributed to the strong effect of the direction of the flo
relative to the growth axes. The flow increases the gro
velocity of the arm growing upstream into the flow, has on
a small effect on the arm growing normal to the flow, a
retards the growth of the arm growing into the downstre
direction in the wake of the crystal.

The phase-field results for the upstream growing dend
reveal that an axial flow significantly changes the operat
state of the dendrite tip. The ratio of the tip-selection para
eters without and with flow, based on the actual tip radi
varies by about a factor of up to 2 over the range of fl
velocities investigated. This result shows that the flow d
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torts the interface shape very near the tip and thus influen
the actual tip radiusr. Further away from the tip, however
flow leaves the interface shape parabolic and only influen
the value of the tip radiusrp , obtained by fitting a parabola
to this shape. This parabolic tip radiusrp , which corre-
sponds to the tip radius typically measured experimentally
three dimensions, is in good agreement with the analyt
two-dimensional Oseen-Ivantsov solution for the tip Pec
number and the linearized solvability theory of Bouissou a
Pelce for the ratio of the selection parameters. The appl
bility of these theories, which assume a purely parabolic
may seem surprising. We note, however, that this nontriv
feature of the linearized theory is already present with
flow. In this case, the theory predicts reasonably well the
velocity over a comparable range of anisotropy in both t
@49# and even three dimensions@50# despitethe presence of a
tip distortion already induced by anisotropic surface tens
alone. We therefore conclude that the shape deviation fro
parabola on a short distance scale from the tip of a fraction
r, which is controlled by both anisotropy and flow, does n
significantly influence the tip velocity and the two
dimensional parabolic tip shape on a larger scale of ten
radii.

Convection is also found to enhance the growth of
sidebranches along the upstream growing dendrite arm.
sidebranch amplitudes, scaled with the tip radius, obtai
from the phase-field simulations are in qualitative agreem
with predictions from WKB noise amplification theory. Eve
though flow does not change the WKB relation for the var
tion of the scaled sidebranch amplitude, the predicted sc
~and unscaled! amplitudes differ with and without flow be
cause the tip-operating parameters used in the rela
change due to flow. A completely quantitative comparis
between the scaled sidebranch amplitudes from simula
and theory is prevented by the uncertainty in the prefacto
the WKB relation. Phase-field simulations of a dendr
growing at an angle with respect to the flow show that
sidebranch amplitudes grow much faster on the upstre
side than on the downstream side. The comparison w
WKB theory shows that this asymmetric behavior can
explained by the differences in the mean shape of the
stream and downstream sides of the inclined dendrite a
Finally, the scaled sidebranch wavelengths obtained fr
phase-field simulations with and without flow show a simi
variation with distance from the tip, indicating that the flo
has little effect on the selection of the scaled critical wav
length. Any difference is again due to changes in the dend
tip-operating parameters due to flow, whereas the WKB
lation for the wavelength variation remains the same w
and without flow. The scaled sidebranch wavelengths m
sured from the phase-field simulations show some disag
ment with WKB theory near the dendrite tip both with an
without flow. As in@43#, we conclude that this is most likely
due to the fact that the stretching of the wavelength of p
turbations close to the tip has so far been neglected in W
calculations of noise amplification@27,28,43#.

The extension of the present work to three dimensio
weaker anisotropies, higher flow velocities, and lower sup
coolings remains an important challenge for the future.
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