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Phase-field simulations of dendritic crystal growth in a forced flow
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Convective effects on free dendritic crystal growth into a supercooled melt in two dimensions are investi-
gated using the phase-field method. The phase-field model incorporates both melt convection and thermal
noise. A multigrid method is used to solve the conservation equations for flow. To fully resolve the diffuse
interface region and the interactions of dendritic growth with flow, both the phase-field and flow equations are
solved on a highly refined grid where up to 2.1 million control volumes are employed. A multiple time-step
algorithm is developed that uses a large time step for the flow-field calculations while reserving a fine time step
for the phase-field evolution. The operating statelocity and shapeof a dendrite tip in a uniform axial flow
is found to be in quantitative agreement with the prediction of the Oseen-lvantsov transport theory if a tip
radius based on a parabolic fit is used. Furthermore, using this parabolic tip radius, the ratio of the selection
parameters without and with flow is shown to be close to unity, which is in agreement with linearized
solvability theory for the ranges of the parameters considered. Dendritic sidebranching in a forced flow is also
guantitatively studied. Compared to a dendrite growing at the same supercooling in a diffusive environment,
convection is found to increase the amplitude and frequency of the sidebranches. The phase-field results for the
scaled sidebranch amplitude and wavelength variations with distance from the tip are compared to linear
Wentzel-Kramers-Brillouin theory. It is also shown that the asymmetric sidebranch growth on the upstream
and downstream sides of a dendrite arm growing at an angle with respect to the flow can be explained by the
differences in the mean shapes of the two sides of the arm.
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I. INTRODUCTION (PVA) dendrites almost linearly with the longitudinal com-
ponent of the external flow velocity, but is independent of
Free dendritic growth of a crystal into a supercooled meltthe transverse component of the flow velocity. Emsellem and
involves two inherently coupled processes: the steady-stafabeling[12] performed growth experiments using ammo-
growth of the dendrite tip and the time-dependent sidenium bromide and found &* to be almost independent of
branching development. The dendrite tip is usually characthe external flow velocity in their experimental range. On the
terized by its operating state: growth velocity and tip shapeother hand, the experiments on succinonit(BCN) by Lee
In the absence of flow, microscopic solvability thepty-3] et al. [13] and Ananth and Gil[14] indicate that 16* de-
has successfully clarified the crucial role played by crystalcreases, rather than increases, with increasing flow velocity.
line anisotropy in the tip selection, and this theory has been On the theoretical side, the presence of melt convection
confirmed by phase-field simulations in tyé,5] and three  considerably complicates the tip-selection problem. Theoret-
[6] dimensions. Dendritic sidebranches are primarily impor-ical models have been developed to predict how heat trans-
tant to metallurgists because they determine the microstrugort away from the tip is modified by flow in various situa-
ture and microsegregation patterns in metals and alloys. tions[15-21. Ben Amar and Pomeal22] have proposed
Convective flow usually accompanies dendritic crystalscaling laws to characterize the tip-operating state in differ-
growth. In fact, all dendritic growth data acquired under ter-ent regimes. Bouissou and Pe[&S] have extended the lin-
restrial conditions are found to deviate from the predictionsearized solvability theory, which assumes a parabolic tip
of diffusion theories at low supercoolingg—10|. Convec- shape, to make quantitative predictions of tip selection for
tion in the melt is believed to be responsible for that deviathe case of a uniform axial flow in two dimensions. A rigor-
tion. The effects of convection on dendritic growth and pat-ous treatment of dendritic growth with flow, however, has
tern formation have been an active research topic for manyemained lacking. Melt convection adds new length and time
years, but have not been fully understood. Experimental inscales to the problem and could lead to the formation of
vestigations of the operating state of a dendrite tip in thecompletely different dendritic patterns in comparison to the
presence of a forced flow have failed to yield consistent repurely diffusive case.
sults. Bouissoet al.[11] found that the inverse of the selec-  The formation and development of sidebranches are gen-
tion parameter ** ~p2V, wherep andV denote the tip erally attributed to the Mullins-Sekerka instabil[84]. Side-
radius and velocity, respectively, increases for pivalic acidoranching is believed to initiate from thermal noise intrinsi-
cally present in a solidification system. Langer and co-
workers [25-27 theoretically investigated the selective
*Corresponding author. FAX(319 335-5669. Email address: amplification of thermal noise near the tip of an axisymmet-
becker@engineering.uiowa.edu ric dendrite. Brener and Temkir28] showed that quantita-
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tive agreement with experiments could only be achieved bynade. Finally, some conclusions are drawn from the present
taking into account the nonaxisymmetric shape of dendritesnvestigation.
Many experiments have been performed to study dendritic
sidebranching behavior for a variety of materigds29—-31. Il. PHASE-FIELD MODEL
Doughertyet al. [29] studied the growth of ammonium bro-
mide dendrites and found that sidebranches are not periodic
at any distance from the tip, with apparently random varia- The present approach is based on a methodology devel-
tions in both phase and amplitude. Bouissial. [30] in-  oped by Beckermanat al. [39] that incorporates melt con-
vestigated dendrites of pivalic acid under the influence of &€ction phenomenologically in a standard phase-field model
periodic forcing flow and found that the dendrites behavedf sol|d|f|cat|pn with anisotropic surface energy and klnetlcs.
just like a linear selection amplifier, which is in qualitative T1he phase-field equation is unchanged from the purely dif-
agreement with linear WKB theory. Bisang and Bilgrgsi] fusive case, thus assuming that the phase_ _f|eld is not ad-
measured the tip shape and sidebranches of xenon dendrit¥§cted by the flow and that the phase-transition temperature
and obtained quantitative agreement with the theory of Brdoes not depend on pressure. A more complete phase-field
ener and Temkifi28] for thermal noise amplification along a €duation for the convection case, which can be reduced to a
nonaxisymmetric dendrite. nonequilibrium form qf the Clausius-Clapeyron equation,
The phase-field method has emerged as a powerful tod|as recently been derived by Andersenal. [41]. For the
for numerically simulating dendritic growth[32—3§. present purpose of studying the effects of melt convection in
Through the introduction of a phase-field variable to distin-dendritic growth, the pressure dependence of the interface
guish between the solid and liquid phases, the method prd€mperature can safely be neglected. The usual no-slip con-
vides a continuum description of phase transformation, andition at a sharp solid-liquid interface is enforced through a
the complicated topological changes of a solid-liquid inter-varying interfacial force term in the liquid momentum equa-
face can be handled easily without the need to track thdion in the diffuse mterface_r_eglqn. The force term is chosen
interface. Recently, phase-field models for solidificationSuch that the no-slip condition is accurately reproduced re-
have been extended to include melt convecf@®41, pro- gardless of the diffuse interface thickness. This is in contrast

viding a novel approach to study the interactions of dendritid® Previous approaches that treat not only the liquid but also
growth and melt convection. the solid phase as Newtonian fluids and specify the viscosity
The objective of this paper is to present a quantitative®f the solid phase to be much larger than that of the liquid
study of free dendritic growth of a pure substance in a forcehase[40,41. In addition, the results of the asymptotic
flow in two dimensions using the phase-field method. Both@nalysis of Karma and Rapppt] for the purely diffusive
the tip-operating state and the sidebranching development iphase-field model, which extend to the convective case
a forced flow are investigated. While we presented some df39,42, are exploited to render our computations more effi-
our results on the tip-operating state in the presence of flogient and to investigate the limit of \_/an_lsh_lng interface kinet-
in a recent communicatiofd2], this full-length paper pro- icS (i.e., local equilibrium at .the solid-liquid interface
vides a more detailed account of the work and also includes L€t # denote the phase field, whege= =1 refers to the
sidebranching. To our knowledge, the only previous studyulk solid and liquid phases, respectively. The phase field
using the phase-field method for simulating dendritic growthvaries smoothly from 1 in the solid te 1 in the liquid in a
with melt convection is by Tonhardt and Ambdip], who ~ Small but numerically resolvable diffuse interface region,
focused on dendritic growth from a wall inside a channel.2nd the solid/liquid interface is defined by the contair
They found that sidebranching is promoted on the upstrear 0. The anisotropic form of the phase-field equation is
side and inhibited on the downstream side, but no quantitadiven by
tive comparison was made with existing sharp interface

A. Incorporation of convection

(1) dyp=V - [WA(R)V §]— 3, F ()

theories.

The present paper is organized as follows. Following this +0,[ |V p1PW(R) 3, W()]
Introduction, Sec. Il gives the formulation of the phase-field X
model that incorporates both melt convection and thermal +&y[|Vz//|2W(ﬁ)&¢yW(ﬁ)] (]

noise quantitatively. The asymptotics of the phase-field

model are also reviewed. Section Il discusses the numericaind the energy equation, including the advective flux, can be
issues related to the present phase-field and flow-field calcuyritten as

lations along with the problem description. Section IV fo-

cuses on the tip-operating state in a forced flow, and com- U+ (1—¢)V-Vu=DVZ2u+d,¢, 2
parisons of the numerical predictions with the analytical two-

dimensional Oseen-lvantsov and linearized solvabilitywhere 7 is a relaxation time. Bothr andW are functions of
theories for tip growth in an axial flow are made. The side-the interfacial normafi in order to account for anisotropic
branching development due to the introduction of thermaburface energy and kinetics. The functibify,Au) =f(¢)
noise is discussed in Sec. V, in which both the wavelengtht Aug(#) is a phenomenological free energy, whé(g/)
and amplitude of the sidebranches are studied as a function — %2+ ¢*/4 is a double-well function andy(y)=

of the convection intensity and the thermal noise strength. A- 24/%/3+ ¢°/5 is an odd function. The dimensionless tem-
comparison with the linear WKB theory prediction is also peratureu is defined as T—T,)/(L/C;), whereT,, is the
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melting temperature and andC,, are the latent and specific is incorporated in a thermodynamically consistent manner
heat, respectively. The positive constantontrols the cou- using the Langevin formalism. Karnjd5| has analyzed us-

pling between the temperature field and the phase field. Thimg a sharp-interface model the issue of the relative impor-
interface thickness parametétis assumed to take the form tance of the bulk and interface noises. He concluded that the

W(R) =W,A4(N), with interface noise drives short-wavelength interfacial fluctua-
) 4 4 tions that are not selectively amplified by the morphological
Ay(M)=(1-3e)+4s(yy+ )|V yl*, (3) instability along the sides of dendrites for materials with rea-

) o ) sonably fast attachment kinetics. This prediction was con-
where, and ), are first derivatives with respect xeandy,  firmed by phase-field simulations of dendritic sidebranching
ande is tr_le anisotropy strength of the surfacg energy. Thgn two dimensions by Karma and Rapgdi3], who found
thermal diffusivity is denoted by, ¢ can be viewed as a tnat the sidebranching activity remained quantitatively un-
solid fraction that is coupled to the phase figtsimply by changed when phase-field simulations were carried out with
¢=(1+¢)/2,¢<[0,1], andV is the intrinsic flow velocity. (i) both the interface and bulk noises, afiid with only the
From the “thin-interface” limit analysig4], we have the latter. As a result, only the conserved bulk noise is consid-
following relations that determine the relaxation timeand  ered here.
coupling constank: 7= o[ Ay(R)]%, A=a;W,/d,, where The conserved bulk noise is added to the energy conser-
dq is the capillary length, and,=0.8839 for the functional vation equation in the following manner:
forms of f(¢y) and g(¢) given above. Setting the kinetic .
effect to zero, as explained in Ref4], we have 7 du+(1—¢)(V-Vu=DV2u+4d,¢—V-q, (7
=a,a,(Wo)3/(doyD), wherea,=0.6267 for the functional . ) )
forms given above. Therefore, only, is a free parameter Where g stands for the thermal noise vector, obeying a
that has to be properly selected to obtain converged solf@@ussian distribution with a variance,
tions. C.T2

The conservation equations for mass and momentum take(qm(F,t)qn(F’ ,t’)>=2DkBp—2M Snd(F—F')S(t—t"),
the following form[39]: ®

wherekg is the Boltzmann constant anglis the delta func-

- I tion. It is helpful to express the governing equations in a

Wl (1=P)V]+ (1= ¢)V-VV dimensionless form that minimizes the number of computa-
. oL tional parameters, and also renders the interpretation of the
=—(1=¢)Vplp+ V- [vV(1-¢)V]+My, noise magnitude more transparent. UsMfj as a length

(5)  scale andry as a time scale, all dimensional variables are

cast into their dimensionless form a#W,—f, t/7—t,

wherep, p, and v are the pressure, density, and kinetic Vis-v/r, /W,—V, Dry/(Wy)?—D, vro/(Wo)2— v, (p/p)(7o!

cosity of the melt, respectively. The temh? is a dissipative  Wy)?— (p/p), andqro/W,— 6, while W, and 7, are set to

interfacial force per unit volume and is modeled[ 9] unity. The dimensionless variance of the thermal noise vec-

tor is then given by
2h¢p*(1-¢)

Mi=—r——pz—V, (®) (Gn(F,)0n(F' 1)) = 2DF B F—F) 8(t—t'),  (9)

V-[(1-¢)V]=0, (4)

whereF is the magnitude of the thermal noise defined as

_ (do ‘
=|:ex WO) (10)

andd is the dimension. In three dimensions,, represents
the magnitude of the thermal noise existing in experiments.
%he mean-square fluctuation of the temperature in a volume
AV is given by(ATZ):kBTfA/(CpAV), a fixed quantity for
a given material. Therefore, physicaky, can be interpreted
. , as the mean-square fluctuation wfinside the microscopic
B. Incorporation of thermal noise volume (dy)3. In the present two-dimensional simulations,

Methods to incorporate thermal noise in the phase-fieldEq. (10) requires for dimensional reasobsandC,, to be the
model have been developed by Karma and Rapg@land latent heat of melting and the specific heat at constant pres-
Pavlik and Sekerkd44]. Although some previous phase- sureper unit area respectively. These quantities, however,
field simulations have obtained dendritic sidebranches thaare only experimentally meaningful quantities when defined
resemble those observed in experiméiiisthe sidebranches per unit volume in three dimensions. Thus, in two dimen-
are generated by either numerical noise or by randomly drivsions,F, can be treated as a free parameter whose value is
ing the tip. In the model of Karma and Rappel, thermal noisechosen such that sidebranches form at a distance from the tip

where the constarit is found to be 2.757 by an asymptotic
analysis of ple_me. flow past the dlﬁuge mterface._ This term kBTfACp kBTf,.Cp dg ¢
serves as a distributed momentum sink in the diffuse inter- Fu= wd - L2af | we
face region that forces the liquid velocity to zero és-1 LW L%y W
and vanishes in the bulk liquid#(=0). An important prop-
erty of the interfacial force term is that the velocity profile
smoothly approaches the profile for a sharp interface with
no-slip condition atp=0.5 (or y=0) regardless of the dif-
fuse interface thickness.
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comparable to experiment. Equati¢t0) then dictates how U
to chooséd-, for a given choice of, so as to obtain results 1 l l 1 l l l
that are independent of interface thickness. Namely, if one

chooses the computational parameteg/{V,) to be small
compared to unity, which is the main gain in computational
efficiency resulting from the reformulated asymptotics of
Ref.[4], then one must scale down the magnitude of noise in
the phase-field modek,, to keep the fluctuation strength
F ey constant. The main practical conclusion here is that one
still has the computational freedom to choose the interface symmetry
thickness if one rescales appropriately the noise stregth

Because they are restricted to two dimensions, the present
simulations are insufficient to address the issue of whether
the strength of thermal noise present in an experiment is
sufficient to produce the observed sidebranching activity.
They are well suited, however, to shed light on the nontrivial
effect of fluid flow on this activity and to make contact with l l Vv ] 1 l
existing sharp-interface WKB analyses of noise-induced
sidebranching.

symmetry
seed

FIG. 1. Phase-field simulation domain and boundary conditions.

grid space. The solution is first obtained on the coarsest grid
using the standardimpLE algorithm[48]. It is then extrapo-
lated to the next finer grid and serves as the starting solution.
The model described in the preceding section is used tdhe solution on the second grid level is obtained using re-
numerically simulate the growth of a single dendritic crystalstriction and prolongation cycldg7]. This procedure con-
in a uniform forced flow. An externally forced flow was also tinues until the solution on the finest grid level is obtained.
employed in the growth experiments of Refd1-14, For the results reported in this paper, we have used eight to
whereas the flow in other experimeritd] was buoyancy- nine grid levels. For example, starting fromx30 control
driven. A forced flow allows for the control of the flow ve- volumes(CV's), the second grid level has ¥20 CV's and
locity independent of the imposed supercooling. A directthe eighth grid level has 6401280 CV’s. The phase-field
comparison of the present simulations with the forced flowand energy equations were solved only on the finest grid
experiments is, however, not possible because the simuldevel using an explicit Euler scheme. To take advantage of
tions are limited, for computational reasons, to two dimen-the implicit nature of thesimpLE algorithm for the flow-field
sions and relatively large dimensionless supercooliisge calculations, we developed a multiple time-step algorithm
below). Instead, we focus on quantitative comparisons withthat uses a larger time step for the flow-field calculations
analytical theories. Microscopic solvability theories of den-while reserving a fine time step for the phase- and
dritic growth with melt flow are presently available only for temperature-field calculations. The former is typically one
forced convection in two dimensions. order of magnitude larger than the latter, resulting in a
The simulation domain is schematically illustrated in Fig. roughly 60% reduction in computational time compared to
1. A circular seed exists initially at the center of the squareusing a single time step for all variables. The error in the tip
domain. The crystal axes are aligned with the coordinatevelocities and radii due to this multiple time-step algorithm
axes, unless otherwise noted. Supercooled melt enters theas found to be negligibly small. The tip radii are evaluated
domain from the top boundary with a uniform velocityy  from the computed phase-field contours using the method
and exits at the bottom boundary. Periodic boundary condiexplained in Ref[4]. Finally, the generation and discretiza-
tions are imposed on the vertical side boundaries of the dation of the conserved noise are accomplished following ex-
main. The initial conditions are as follows: the initial veloc- actly the same procedure as Karma and Rappel in their
ity field is taken to be that for steady flow around the seedphase-field simulations of dendritic sidebranching without
and the inlet and initial melt temperatudimensionlessare  flow, which is described in detail if43].
both set to—A (supercooling except inside the seed where  The ranges of the governing dimensionless parameters
the dimensionless temperature is z&ibthe melting point (supercooling A, anisotropy strengthe, flow velocity
Due to the symmetry of the problem with respect to theUd,/D, and Prandtl number Prv/D) considered in the
vertical axis, simulations are carried out on only half of thepresent numerical simulations are strongly limited by the
domain, and the results are simply mirrored to the other halfavailable computer time and memory. Since a uniform grid
The mass and momentum equations are solved numeris used, the parameters need to be chosen such that the tem-
cally using the multigridsiMpLE method[46,47 on a uni-  perature and velocity gradients around the dendrite are ac-
form, square grid pattern. Compared to single grid methods;ommodated in a relatively small domain in order to avoid
the multigrid method provides much stronger coupling be-an excessive number of grid points. Simulations are per-
tween the pressure and velocity fields, and therefore is eormed for dimensionless supercoolingsof 0.45 and 0.55
tremely efficient and robust when used on a highly refinedcand anisotropy strengths ranging from 0.01 to 0.05. As

IIl. PROBLEM DESCRIPTION AND NUMERICAL
PROCEDURES
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shown in previous studies that do not consider flaib], TABLE I. Phase-field simulation of dendritic growth without
these parameters allow for the choice of a relatively smalFonvection: numerical results for different diffuse interface thick-
domain size, while still accommodating the thermal diffusionn€Sses versus microscopic solvability the@yaci predictions for
layer around the growing dendrite. In other words, without® =0-55. In the simulations, grid numbers ag=640 andN,
flow, the simulation domain is chosen large enough that the 1280: dimensionless spacidg/Wo=0.4.

dendrite tips grow in a steady state after the initial transient

*
without being affected by the boundaries. With flow, the b do/Wo Vo/D pldo 7
thermal boundary layers in front of the upward and horizon- £=5%
tally growing dendrite tipgsee Fig. 1 can be expected to be 4 0.139 0.0171 6.83 2.51
smaller than in the diffusion case. The thermal wake behind 3 0.185 0.0175 6.02 3.15
(downstream dfthe crystal can become quite large, depend- 2 0.277 0.0180 5.76 3.35
ing on the flow velocity. However, the dendrite tip in the  exact 0.0170 6.41 2.86
wake grows much slower than the other orisse belowy
and the thermal field is still accommodated within the do- e=3%
main since the crystal is placed in the center. The flow ve- 4 0.139 0.0112 25.9 0.27
locity is chosen small enough that the Reynolds number is 3 0.185 0.0120 24.0 0.29
less than unity. This is important for the comparison of the 2 0.277 0.0110 21.7 0.38
results with theory, as shown below. It also results in a more exact 0.0111 23.3 0.33
simple flow pattern and limits the size of the wake region. It =10
was verified that the velocity gradients across the lower 6 0.0923 0.0036 132.2 0.032
boundary(exit) are small. The Prandtl number is chosen to ' ' ' '
be equal to 23.1 in all simulations. This value is representa- S 0.1108 0.0041 119.0 0.034
tive of SCN, a substance commonly used in dendrite growth 4 0.139 0.0040 119.2 0.035
experimentg§7,13,14. With the ratio of the velocity to ther- 3 0.185 0.0042 117.0 0.035
mal boundary-layer thickness approximately equal to €Xact 0.0034 129.6 0.035

Prt3=2.8, the velocity boundary layer for the upstream

growing dendrite arm is still accommodated within the do-

main, and the upstream tip grows in a steady fashion withouto correct for the grid anisotropy effect numerically. For ex-

being affected by the boundaries. As the length of the hori@MPI€, for the grid spacing dfx/W,= 0.4 that we have used

zontal dendrite arms increases, their growth may be influl” th'zs study, the correction to the anisotropy strength is
enced by the lateral boundaries, because the flow needs to b&X) /240=6.7x10"", which is small compared to the

accommodated in the increasingly smaller gap between thgominal anisotropy strength of 0.01-0.05, so no correction is
dendrite tip and the side boundary. However, the results bé€eded here. However, for a larger grid spacing, the correc-

low show that this effect is relatively small, and the horizon-tion will become important.

tal dendrite arms can grow with a relatively constant tip ve-

locity for some time. Nonetheless, the results for the IV. TIP GROWTH
horizontal and downstream dendrite arms are not analyzed in .
much detail. A. Convection-controlled growth

For steady diffusion-controlled growttJ=0) in two di- Although many theories have been proposed to account
mensions, it is possible to quantitatively benchmark thefor the effect of convection on dendritic growth, these theo-
phase-field simulations using the results of microscopic solvries are not rigorous because they usually prescribe a tip
ability theory. Table | shows the present simulation resultsshape. No exact solution exists for the selection of the tip-
for the steady-state dendrite tip velocities and radii at a Sueperating statévelocity and radiusin the presence of flow.
percooling of A=0.55 and three values of the anisotropy It is thus impossible to directly benchmark our numerical
strength—e=0.01, 0.03, and 0.05—along with the predic- results, as we did for purely diffusive growth. However, the
tions of microscopic solvability theory for each case. In theaccuracy of our phase-field simulations with flow can still be
table, decreasing the dimensionless thermal diffusiiity —established by examining their convergence behavior in the
and thus decreasing the coupling constgns equivalent to  thin-interface limit. Table Il summarizes the results of con-
decreasing the interfacial thickness. It can be seen that theergence tests for two values of the anisotropy strength. The
phase-field results are independent of interface thickness angbstream tip velocities and radii are presented for decreasing
that quantitative agreement with the benchmark solution hagalues of the diffuse interface thickness, i.e., decreasing di-
been achieved. mensionless diffusivityD in the limit of vanishing interface

We also numerically examined the effect of grid anisot-kinetics, and for different grid sizes. For each anisotropy,
ropy by rotating the principal growth directions of a dendrite converged results are obtained.
by 45°, which represents the worst scenario of grid anisot- For a fixed supercooling of 0.55, Fig. 2 illustrates the
ropy. For a supercooling oA=0.55 and an anisotropy computed evolution of the dendrites for three different an-
strength of £=0.05, we found that the steady-state tipisotropy strengths {=0.01, 0.03, and 0.05without flow
growth velocity for the rotated case is about 4.7% lower thar(top panel$ and with flow (bottom panels For the bottom
for the base case. Karma and Rad@é] proposed a method panels, the input parameters also include the flow velocity
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TABLE Il. Convergence study of dendritic growth with flow: results for the upstream tip steady-state v& @ity radiugp for different
grids and diffuse interface thicknesses. In the simulations, the following parameters were held constant: supérec@lity Prandtl
number P23.1, andAx/W,=0.4. Tcpy denotes the CPU time in hours on a HP C200 workstatignandN,, are the number of control
volumes in thex andy directions, respectively.

e Ud,/D D do /W, N, Ny Vd,/D pldo Tepu
0.03 0.135 3 0.185 640 1280 0.0288 16.8 45
0.03 0.135 2 0.277 640 1280 0.0296 15.5 60
0.03 0.135 1 0.554 1024 2048 0.0303 14.7 150
0.03 0.135 2 0.277 1024 2048 0.0286 14.9 120
0.05 0.035 4 0.139 160 320 0.0265 8.10 3
0.05 0.035 4 0.139 288 576 0.0240 7.51 8
0.05 0.035 4 0.139 576 1152 0.0244 7.46 31
0.05 0.035 3 0.185 320 640 0.0248 7.48 17
0.05 0.035 2 0.277 512 1024 0.0247 7.61 70

Udy/D=0.07 and the Prandtl number Pp/D=23.1. locity in the absence of flow is also plotted. All tip velocities
These calculations were performed on a grid of 32¢start from a large value before leveling off. This initial de-
X 640 CV’s with a uniform spacing okx/W,=0.4. For bet-  crease is simply caused by the initial conditions. The up-
ter visualization, we have interpolated the flow field onto astream tip eventually reaches a steady state with a growth
grid that is about 60 times coarser than the one used in thgpeed that is about 160% higher than the value in the absence
computations. It can be seen that the shape of the dendrites@$ flow. The tip that grows in a horizontal direction normal
significantly influenced by the flow. The growth velocities of to the flow appears to slow down even after a long time,
the upstream tips are much higher than those of the dowralthough the decrease after abtut= 400 is very small. The
stream tips and the tips normal to the flow, because the imaverage growth speed for 860/ 7<1000 is only about 20%
pinging flow reduces the thermal boundary-layer thicknessigher than the pure diffusion value. Note that the flow past
on the upstream side. The evolution of the downstream arrthe horizontal tip continually accelerates because the inlet
in the wake of the dendrite is retarded relative to even thQnass ﬂOW rate has to be accommodated in an increasing|y
diffusion case, because of advection of heat from the upsmaller gap between the tip and the side boundary. The
stream portion of the dendrite. An interesting observation i%ownstream t|p also does not reach a Comp|ete Steady state
that the horizontal tips grow slightly upwards. This dendriteqye to the ever-increasing size of the dendrite, but a similar
“tilting” is due to the asymmetry of the heat fluxes on the average shows that its speed is approximately 45% lower
upper and lower sides of the horizontal arm. than without flow. Figure @) shows the evolution of the tip

Figure 3a) shows the evolution of all tip velocitieSIp-  radii corresponding to the conditions of FigaR Again the
stream, normal to flow, and dOWnStrepIDr the fO”OWing upstream t|p reaches a Steady_state ra&b@ut 35% lower
example: A=0.55, £=0.03, Udy/D=0.135 and Pr than the no-flow value while the other tips continue to
=23.1. For comparison, the value of the steady growth veeyolve slowly.

The knowledge of the tip velocity and radius allows for
the calculation of two important parameters in dendritic
growth: the tip growth Peclet number, £¥p/(2D), and
the selection constans;*, defined byp?V=2d,D/c*. For
the example shown in Fig. 3, we find 28.21¢* =0.30 for
the upstream tip; Pe0.14¢* =0.36 for the tip normal to the
flow; and Pe=0.090* =0.38 for the downstream tip. For the
same supercooling and anisotropy strength but without flow,
we have Pe0.12¢0* =0.39. The differences in the Peclet
numbers simply reflect the effect of the flow on the heat
transfer at the differently oriented tips. The fact that the con-
vection value ofo™* for the horizontally growing tip is close
to the diffusion value is in agreement with the experiments
of Bouissouet al.[11], who found thato* does not depend
on the transverse component of the flow. The fact that the

FIG. 2. Evolution of phase-field contours for a dendrite growing downstream tip also has @ value close to the diffusion
at A=0.55 ande =0.01, 0.03, and 0.0Hrom left to righy without ~ value may be explained by the relative weakness of the flow
convection(top panels and with convectior(bottom panelsfor a in the wake region of the dendrite. On the other hand, the
flow velocity of Ud,/D=0.7 and a Prandtl number of #23.1  upstream tip for the example of Fig. 3 hag-a value that is
(320x640 CV’s with a uniform spacing ahx/W,=0.4). significantly different from the no-flow case. This issue is
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[ FIG. 4. Variations of the growth Peclet number with the flow
30 1 Peclet number, and comparison with the two-dimensional Oseen-

downstream tip Ivantsov solution(solid line) for A=0.55 and P#23.1. Both the
without flow growth and flow Peclet numbers are evaluated using the actual tip

-------------------------------------- radiusp for the open symbols and dashed lines, and the ragjus

tip radius, p/do
[\
S
i

- p normal to flow | based on the parabolic fit for the solid symbols.
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FIG. 3. The operating state of dendrite tips in a forced flow forWhere .PeEUp/(ZD) is the flow Peclet number, f”m.d th_e
the case ofA=0.55, £=0.03, Ud,/D=0.135, and Pr23.1. (a) _subscrlplc on the growth Peclet n_umber serves to dl_stmgwsh
Evolution of dendrite tip velocitiestb) evolution of dendrite tip 't from the Peclet number obtained from simulation. The
radii. functiong(¢) is defined as

_ ~erfoJRe/2) . J2/(7 Re)

investigated in more detail in the following by comparing the  g(¢)= {exp —Re/2
present results for the upstream tip to the linearized solvabil- erfa(VRe/2  erfa(VRe/2

ity theory of Bouissou and Peld@3] for dendrite growth _ _

with a uniform axial flow from a direction opposite to the exp(—Rel/2)}, (12)

growth direction. where ResUp/v=2 Pg /Pr is the Reynolds number. It is im-

portant to note that Eqgll) and (12) apply only to the
B. Comparison with linearized solvability theory upstream tip in the present simulations. The relationghip
=A(Pe.,Pg) reduces to the well-known two-dimensional
Bouissou and Pelde3] studied theoretically the effect of lvantsov solution in the absence of flow ¢Reé). A heat
a forced flow on the operating state of a dendrite tip in twotransport solution of the same type, although written in a
dimensions. Their theory consists of two parts: the heatlifferent form, has also been derived by Ananth and Gill
transport solution and the linearized solvability analysis. Thed19].
flow is assumed to be in the small Reynolds number regime The upstream tip Peclet numbers extracted from the simu-
where the Oseen flow approximation is valid. In that regimeJations are compared to the predicted values.Y P®m the
the nonlinear convective terms in the Navier-Stokes equa©seen-lvantsov relatiofiEq. (11)] in Fig. 4 for A=0.55, Pr
tions can be linearized to yield the well-known Oseen equa=23.1, with Pe ranging from 0 to 1(R€0.1), and three
tions. By assuming the dendrite tip shape to be parabolic andnisotropy strengthse=0.01, 0.03, and 0.05 While the
the surface energy to be negligible, they obtained a relationPeclet numbers increase with increasing flow velocity, the
ship between the growth Peclet number )Pdlow Peclet ones from the simulations are significantly below the predic-
number (Pg, and the supercoolin@\), tions from the Oseen-lvantsov relation, with the gap between
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SprrTT T T T T T T T T T T Consequently, in order to meaningfully compare our re-
i sults to the predictions of the Oseen-lvantsov relation, which
- is based on a parabolic tip shape, we must use the fitted
4L radiusp, instead of the actual radiyswhen calculating the
< (R ivantsov parabola tip Peclet number for our simulations. For this purpose, we
i — — — - =001 extracted the parabolic tip radiys, , by measuring the slope
| e £.20,03 of zversus<? in the region of the simulated interfaces behind
3 £=0.05 the tip where this plot becomes a straight line. Note tha

likely to be the experimentally measured tip radius since a
parabolic fit of the tip shape has been traditionally used to
extract this parameter, even though it does not correspond to
the actual tip radius. Using, and the tip velocityv from
our simulations, we calculated a parabolic Peclet number,
Pe,=Vp,/2D, and for later use the parabolic selection pa-
rameter, (f*)p=2Dd0/(p§V). As opposed to Pe, Rés in
good agreement with R@redicted from Eq(12) for all flow
and anisotropy strengths, as shown in Fig. 4.

The linear solvability analysis by Bouissou and P¢R2&]

WSS ST SRS [N TR TN OE T (NS WURE TS S N TSNS SN GO NS [ WO SO0 VOO

LARRLAN B B NN (R S Py [

L L T T T S I I TR U IO T W
% 0.5 1 1.5 2 reveals that the ratio of the selection parameters without flow
xlp and with flow is a function of a dimensionless flow param-
ter x,

FIG. 5. Curvature variation along a needle crystal as a functione
of surface energy anisotropyzero anisotropy represents the X=a(Re)doU/(/33/4pV), (15)
Ivantsov parabola

where 3=15¢ anda(Re) is given by

simulation and theory increasing with This gap has been
observed previously in a purely diffusive regif&36). It is a(Re)= 2 Re/mr exp( — Re/2/erfq \Re/D. (16)
due to the fact that the interface shape deviates from a pa-
rabola close to the tip, with this deviation increasing steeplyFor y>x., where y. is a critical threshold value much

with anisotropy strength. larger than unity, the following asymptotic form holds:
The phase-field calculations enable us to quantitatively )
examine the deviation of the computed tip shape from the (0*)olo*=1+by™*, (17

parabolic shape assumed in the theory. A parabola can be ) ) ) )
expressed as where (*), is the selection parameter without flow amés

a constant. Fox smaller than unity, which is the case in the

x2=—2pez or (xIpg)?=—22lpq, (13) present simulations, the ratio of _selection parameters is inde-
pendent of the flow parameter, i.e.,
where the origin of the coordinates-g) is located at the tip, (0 )olo* =1. (18)

with the z axis pointing at the growth direction of the den-

drite and thex axis perpendicular to the growth axis, 8¢l \ye verified and refined the latter prediction by numerically
is the tip radius of the parabola. The curvature of the pag, 5 yating the complex solvability integral derived by Bou-

rabola varies withx as issou and Pelcé23], and found that the ratio increases by
about 1% over the range ok0y< 0.2, which corresponds to
K _ 1 (14) the present simulations. Physically, the analysis of Bouissou
ko [1+(x/pg)?]P? and Pelce implies that flow has an effect on the tip-selection

parameter only if §,U)/(pV)=Pgo* is of the order of
whereky=1/pg is the curvature of the tip. Figure 5 shows a unity or greater.
comparison of the curvature variation of the parabola from Figure 6 shows that the ratiosf)o/(op) of parabolic
Eq. (14) with the curvatures measured from phase-fieldselection parameters without and with flow is indeed nearly
simulations in the absence of convection for three anisotropjndependent of the flow parameter for albnd A, in agree-
strengths(0.01, 0.03, and 0.051t is seen that foe =0.05, ment with the linear solvability theory prediction. The appli-
the curvature at the tipx(p=_0) is almost four times larger cability of this theory, which assumes a purely parabolic tip,
than that of a parabola. However, for the lowest anisotropymay seem surprising. We note, however, that this nontrivial
(0.01), the tip shape is reasonably close to a parabola. Alfeature of the linearized solvability theory is already present
curvatures become almost identical after abglp=1.5.  without flow. In this case, the theory predicts reasonably well
This implies that the anisotropy influences the dendrite shapthe tip velocity over a comparable range of anisotropy in
only in the region very close to the tip. Farther away fromboth two[49] and thred50] dimensions despite the presence
the tip, the interface shape is accurately fitted by a parabolaf a localized tip distortion that causpgo depart fromp,, .
z= —X2/2pp. Thus, we can conclude that even in the presence of flow, this
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4 —— T along a single line in Fig. 6. This would indicate thgt
A € Or/O* (O*)o%, | remajns a.useful scgling param_et(_ar even when u_sing. the ac-
. 055 001 o . tual tip radius. Certainly, the variation oé)q/(co™*) in .F|g.
8L 003 & a Pr=23.1 ] 6 should not be construed as a test of the solvability result
B 005 o = : given by Eq.(17).
§ 0.45 0.01 >
g 2 b 3;32 NN on © - V. SIDEBRANCHING
g o a o’ ¢ | A. Sidebranching with convection
E 0 4" ' " The flow influences not only the tip-operating state, as
O N u )
«g 1 A o = discussed in the preceding section, but also the dynamics of
% I linearsolvabilityj ] dendritic sidebranching. In the following, we will study the
= dynamics of sidebranching by presenting simulation results
- for different flow velocities, thermal noise strengths, and
0 o R 011 — 02 flow directions relative to the growth axes. The following

parameters are held constant: supercooling0.55, anisot-
dimensionless flow parameter, %, ropy strengthe = 3%, and Prandtl number P23.1. Without
flow, the tip-operating state is given byd,/D=0.011,
FIG. 6. Variation of the ratio of the selection parameters withoutp/dg=21.8, ando™ =0.38. All calculations in this section
and with flow as a function of the dimensionless flow paramgter were performed on a grid of 1022048 CV'’s with a uni-
and comparison with the linear solvability theory for a parabolic tipform spacing ofAx/W,=0.4.
(the theoretical lines for all three anisotropy strengths coincide  Simulation results for a noise strength &,=1.25
Both the ratio of the selection parameters and the flow parametex 10 * and a flow velocity ofud,/D =0.027 are shown in
are evaluated using the actual tip radiufor the open symbols and  Fig. 7. For these conditions, the steady-state operating state
the radiusp, based on the parabolic fit for the solid symbols. of the upstream tip is evaluated &s,/D=0.0164, p/d,
=18.5, ando* =0.36. Figure 7a) shows the computed evo-
distortion does not strongly affect the selection of the tiplution of the phase-field contours from tinéry=4500 to
velocity and the two-dimensional parabolic tip shape on &000, in equal time intervals of 300, together with the veloc-
larger scale of ten tip radii. ity vectors att/7,=6000. It can be seen that the upstream
In contrast, Fig. 6 also shows that the ratio of selectionarm develops numerous sidebranches, whereas the horizontal
parameters based on the actual tip radius varies by a factor ahd downstream arms are just beginning to show instabili-
up to about 2 over the range of flow velocities investigatedties. Figure ) shows the isotherms df 7=5850. The
even thoughy is small. This result shows that the advectiontemperature fluctuations are reflected by the noisiness of the
of heat by the flow has a strong effect on the portion of thecontours. In order to analyze the amplitude and wavelength
dendrite shape within about one tip radius of the tip, which isof the sidebranches in more detail, the temporal variation of
controlled in the absence of flow by the balance betweeithe half-widthx=x(z,t) of the upstream growing dendrite
anisotropic surface tension and diffusion. It is presently notarm is plotted in Fig. {€) for three locations behind the tip
clear why all results for the ratio of selection parametery(|z|/p= 20, 40.5, and 61 These results are analyzed in the
based on the actual tip radiuss{)o/(c*), appear to fall next section.

10M20 E

sl ]

6 T —T
Vip

FIG. 7. Dendritic sidebranching in a forced flow @,/D =0.027,F ,=1.25x 10" 4, Pr=23.1,A=0.55, anct =0.03).(a) Morphological
development front/ 7= 4500 to 6000 in equal time intervals of 30®) isotherms around the growing dendritetat,= 5850; (c) spectra
of sidebranches at three locations behind the tip.

061601-9



X. TONG, C. BECKERMANN, A. KARMA, AND Q. LI PHYSICAL REVIEW E63 061601

X v e e =
e s i e o e = ]

B e ket

,,,,,,,,,,,,

10 ;:\/\/W/\/\I/z\l/—p:Z? _

e e ==

. e .
] p
| ]
1] 4
\ . ]
\ ) 4 %
A A ¥
A - B
\ ;. X N ]
\ 16f 3
{ Ciids = a E E
f ) R14E 54 7
sk E
L 1 " . 1
85 700 750 700

Vip

(a) (b) (c)

FIG. 8. Dendritic sidebranching in a stronger forced floudg /D =0.135) compared to Fig. 4a) Morphological development at
t/ 7o=1050 and 2550 to 3450 in equal time intervals of 3(); isotherms around the growing dendrite tht,=2850; (c) spectra of
sidebranches at three locations behind the tip.

Figure 8 shows simulation results for a case in which thebations in the “linear regime” close to the tip. A comparison
flow velocity is five times largefi.e., Udy/D =0.135) than  with noise amplification theory is made in the next section.
in the case corresponding to Fig. 7. The phase-field contours The flow field around a growing two-dimensional, side-
in Fig. 8(@) correspond tad/ 7o= 1050, 2550, 2850, 3150, and branching dendrite is interesting and deserves further discus-
3450. These times are smaller than in Figg) because the sion. The vector plots of Figs.(d), 8(a), and 4a) show the
upstream dendrite arm grows much faster, while the size afictual magnitude of the velocities, but are too coarse to re-
the computational domain is unchanged. Since the horizontalolve all flow patterns. Figure 10 shows an example of com-
arms grow at approximately the same velocity in Figs. 7 anguted streamlines at two different times. The contours are
8, they can serve as a convenient length scale when compasiotted at unequal intervals in order to illustrate better the
ing the two figures. weaker flows around the dendrite. At the early tiffag.

Figure 9 shows the simulation results for a case in whichl0(a)], the flow pattern is similar to low Reynolds number
the noise strength was increased by a factor of 4 relative toross flow around a circular cylinder and there is no
the cases of Figs. 7 and(® F,=5x10 %), while the flow  boundary-layer separation in the wake region. When the flow
velocity is the same as in Fig. 8. In Fig(@, the phase-field velocity or the dendrite size is large enough, boundary-layer
contours are plotted frord 7o=2400 to 3300, in equal inter- separation occurs in the wake region, as shown in Figh)10
vals of 300. As expected, the amplitude of the sidebranche$wo relatively weak recirculation cells exist on the down-
on the upstream growing dendrite arm increases substantialstream side of the horizontal arms, and the melt actually
compared to Fig. 8. The isotherms shown in Figh)%or  flows toward the downward growing tip. This is reflected by
t/7o=3300 are also considerably more noisy than in Fig.the isotherms in Figs.(B) and 9b), which show an inflec-
8(b). These results are in qualitative agreement with the extion in front of the downward growing tip.
perimental study by Bouissoet al. [30] on pivalic acid A direct illustration of the effect of convection on the
(PVA) dendrites. They found that the amplitude of the side-upstream growing dendrite arm is provided in Fig. 11, where
branches increases with the amplitude of the external pertueach panel is a snapshot of the phase-field contours of the

22

20
18
16

|4
12

10

(a) (b) ()
FIG. 9. Dendritic sidebranching with a larger noise strendth={5x 10 %) compared to Fig. 8(a) Morphological development from

t/ 79=2400 to 3300 in equal time intervals of 30®) isotherms around the growing dendritetat,= 3300; (c) spectra of sidebranches at
three locations behind the tip.
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three panels of Fig. 14). Using these tip radii as length
scales to normalize the coordinates, the three panels of Fig.
11(a) are replotted in Fig. 1(b). Other than for the random
nature of the instabilities, the frequency of the sidebranches
now appears virtually the same for all three cases. The side-
branch amplitude may be slightly increasing with flow ve-

_ locity, but a definite conclusion is difficult to extract from
Fig. 11(b). The fact that the sidebranch wavelength scales
with the tip radius in the presence of flow is qualitatively
consistent with the scaling la¥in)/p=const, where}\) is
some mean sidebranch wavelength, observed in the classical

experiments of Huang and Glicksmén|. Although Huang

and Glicksman varied only the supercooling, the melt veloci-

ties changed substantially in their experiments because the

intensity of natural convection changes with supercooling.
The effect of different thermal noise strengths in the pres-

ence of flow is examined in more detail in Fig. 12, which

shows snapshots of upstream growing arms similar to Fig.

(@ 11. The higher noise level (610 4, right panel clearly

results in a larger sidebranch amplitude compared to the

lower noise level (1.2510 #, left pane). However, the

wavelength of the sidebranches appears to be unchanged.
This observation is consistent with classical noise amplifica-
tion theory. A more quantitative comparison with linear
WKB theory is presented in the next section.

In order to investigate the influence of the flow direction
relative to the growth direction on the dynamics of dendritic
sidebranching, we performed a simulation in which the crys-
tal axes are set at an angle of 45° with respect to the flow.
Figure 13 shows the computed phase-field contout/ &f

Q @ =3540 for a noise strength d¢¥,=1.25x10 * and a flow

velocity of Ud,/D=0.135. A simulation result without
noise(dotted line in Fig. 13Bis also included for comparison.
Under these conditions, the steady-state operating state for
the dendrite arm growing into the upper right corner is given
by Vd,/D=0.023,p/dy=15.5, ands* =0.36. It can be seen
from Fig. 13 that the shape and sidebranching behaviors are
b significantly influenced by the flow direction. Compared to
(b) an upstream arm growing directly into the fldwig. 8a)],

FIG. 10. Flow field around a growing dendriteUd,/D  the growth of the 45° arm demonstrates a strong asymmetric
=0.135,F,=1.25<10 %, Pr=23.1, A=0.55, ande=0.03). (a) behavior. The sidebranching is much more developed on the
When the dendrite is smalt/{(r,=900), there is no boundary-layer Upper .side than on the lower Sid? of the arm. An asymmetric
separation in the wake regiofi) when the dendrite becomes larger behavior can also be observed in the no-noise ¢dashed
(t/ 7o=3450), two symmetric recirculation cells appear in the wakeline), where the growth is promoted on the upper side by the
region. flow while it is suppressed on the lower side. This results in
an asymmetric needle crystal with the upper half of the crys-
tal (divided by the growth axjsmuch wider than the lower
half of the crystal. Obviously, this asymmetry is caused by
the flow inducing a higher heat flux on the upper side of the
left panel, over 0.027 for the middle panel, to 0.135 for thedendrlte arm and advecting hea_lt around the arm tha_xt sup-
) . . . presses growth on the lower side. The asymmetry in the
right panel. All other parameters, including the noise level . X T

— “4 . growth results in a slight dendrite “tilting” phenomenon for
(atF,=1.25x10™ %), are held constant. In Fig. (& (upper o . N .
. . . t?e 45° growing arm. At/ry= 3540 (Fig. 13, the growth
panel3, the coordinates are unscaled, i.e., the images are of ’ . .
o : .~ . axis, defined as a straight line between the center of the
equal magnification. It can be seen that sidebranching is en- . ; o
o . ; . crystal and the tip of the arm, is at an angle of 42.5° with
hanced with increasing flow velocity, and both the amplitude . A o .
; : . respect to the vertical, indicating a 2.5° upward tilt.
and frequency of the sidebranches increase from left to rlgh{.
On the other hand, the primary tip radius decreases with
increasing flow velocity. The tip radiip{d,) are measured
to be 21.8, 18.5, and 14.9 for the flow velocitieslbdl, /D Figures Tc), 8(c), and 9c) show the numerically calcu-
=0, 0.027, and 0.135, respectively, corresponding to théated temporal variation of the half-width of the upstream

arm during the steady-state growth regime. In both Figs
11(a) (upper panelsand 11b) (lower panelg the melt ve-
locity increases fronlJdy/D=0 (purely diffusive for the

B. Comparison with linear WKB theory
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200f- g s
-300:- E' -~
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A 5 i FIG. 11. Effect of flow on den-
[ [ s dritic sidebranching(a) Unscaled
500l L snapshots of the upstream grow-
Xty ing dendrite arm{b) snapshots of
the upstream growing dendrite
arm scaled with the tip radius.
From left to right, flow velocity is
o 0 increased fromUd,/D=0.0 and
- - 0.027 to 0.135. Other input pa-
[ - rameters are kept constant At
I L =0.55, £¢=0.03, Pr=23.1, and
20]- 20 F,=1.25x107%,
%—w& §4o: {}-40_
|- so- 0
sl ghtmt e wl ol
x/p
o growing dendrite arm at several fixed positions behind the
[ tip. Each oscillation corresponds to a sidebranch passing by
- the observation point. Statistical analysis of the spectra in
100l these figures yields two quantities, the root-mean-square am-
I plitude A and the mean waveleng{h) as a function of dis-
i tancez from the tip, that can be compared to theory. The
-200}- root-mean-square amplitud¥(z) is defined ag43]
ook A2) = ([x(z,H) = xo(2)]%), (19
. wherexy(z) is the steady-state position of the interface in the
~400f- absence of thermal noise, which was obtained by time-
- averaging the spectrum(z,t) shown in Figs. ), 8(c), and
s 9(c). The mean wavelengtf)) is defined as
500

. _ (NM(2))=2V(t—t)IN(2), (20)
FIG. 12. Snapshots of the upstream growing dendrite arm at two
noise levelsF,=1.25x 10" % and 5< 10~ *. Other input parameters
are kept constant afid,/D=0.135, P=23.1,A=0.55, Pr=23.1, WhereN(z) refers to the number of extrema ®r{z,t) in a
ande=0.03. time interval[t,,t,]. Equations(19) and(20) allow for the
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XW, the final expressions for the sidebranch amplitude and wave-
length variations with distance from the tip valid both with
and without flow are given, respectively, by
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FIG. 13. Sidebranching for a dendrite with the crystal axes ori-
ented at 45° with respect to the flow &trq=3540 Udy/D
=0.135,F,=1.25x10 4, Pr=23.1,A=0.55, ande =0.03). The

dotted li i i Az — [2( x5 \*
otted line represents the corresponding needle crystal obtained by " _Sexd = _) (21)
phase-field simulation without noise. The growth axis of the arm p 3\30*z '
growing into the upper right corngdotted-dashed lineis at an
angle of 42.5° with respect to the vertical. (\(2)) 120*1 12 22
=77 — ,
P Xo

measurement of the amplitudes and wavelengths from the . -

phase-field results with thermal noise at various distancewhere Xo=xo/p andz=—z/p are the coordinates of the

from the tip. needle crystal scaled with the tip radius. The quarSitge-
Langer[27] and Brener and Temkifi28] have theoreti- notes the dimensionless amplitude of the thermal noise, and

cally analyzed noise-induced sidebranching for specifids given by[43]

three-dimensional needle crystal shafeparabola of revo-

lution, xo~2zY? and a nonaxisymmetric dendrite with a

power law for the ridgesx,~Zz°®, respectively using the

WKB approximation. Good agreement with experimental

data on the growth of dendrite sidebranches was found for . . .

the nonaxisymmetric needle crystal shape of Brener an&a/herefi:Z for two d|men5|ons~and:3 for three dimen-

Temkin. Karma and Rappéh3] have extended the above Sions,V=Vdy/D, p=p/dy, anddo=do/Wo. .

ana|yses to arbitrary needle Crysta| Sha*);es(o(z) in two or The WKB predICtlonS for the sidebranch amplltude and

three dimensions, allowing for a direct comparison with thewavelength variations are obtained by substituting the mean

phase-field results using computed noiseless interfacehapexq(z), as well as the tip radius and selection param-

shapes. By considering the stability analysis of Bouissou angter o*, measured from the phase-field simulation results

Pelce[23], we found that the WKB sidebranching relations into Egs.(21)—(23). Here, we use the actual tip radius, in-

derived by Karma and Rapppt3] remain unchanged in the stead of the parabolic tip radius in the above equations. Since

presence of an external axial flow. This can be seen from th#e tip radius cancels out in the exponent of E21), and it

dispersion relation provided as E@O) in Ref.[23], where  also cancels out in Eq22), this is of no consequence other

the term accounting for the modification of the advection ofthan for the prefactor of Eq21) [see Eq.(23)]. It can be

the perturbations along the crystal by the external flow isargued that the use of the actual tip radius in the prefactor is

proportional to the cosine of the angle between the normal t®hysically more meaningful, since E@1) calculates the

the interface and the growth axis. Since this angle is close tamplification of the noise originating at the very dendrite tip.

90° far from the tip in the region where sidebranching takedviore importantly, it should be emphasized that the prefactor

place, the flow effect becomes negligibly small. Thereforeof Eq. (21), S, is only known up to some dimensionless

—, 2F,D  2F,

2_ =
pl+dv ag,.p,lerv’

(23
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FIG. 15. Calculated sidebranch amplitudes for the upper and )
lower sides of the 45° growing dendrite arfod,/D=0.135,F, FIG. 16. Calculated mean sidebranch wavelengths for the up-
=1.25<10°%, Pr=23.1, A=0.55, ande=0.03) as a function of stream growing dendrite arm as a function of distance behind the tip

distance behind the tip. The corresponding WKB predictions ardor different flow velocities Ud,/D =0 and 0.13j different noise
plotted as different lines. strengths F,=1.25x10* and 5x10°%), and Prk23.1, A
=0.55, ande =0.03. The corresponding WKB predictions are plot-

multiplicative constant of order unitj27]. For a weak an- ted as different lines.

isotropy, and thus smait*, the sidebranching amplitude is
dominated by the exponential amplification factor on theare larger with flow than without. If instead of the actual tip
right-hand side of Eq(21), and thus the distance behind the radius, the parabolic tip radius and selection parameter were
tip at which sidebranches first become visilbay, where used in Eq(21), flow would still affect the predicted ampli-
A(z)/p~0.1[27]] does not depend sensitively on the precisetudes through the explicit appearance of the tip radius in the
value ofS. Here, however, the anisotropy is relatively large dimensionless noise amplitud(note that, while the para-
and o* is itself of order unity. Thus, this distance dependsbolic selection parameter is the same with and without flow,
more sensitively on the precise value i Consequently, aS shown in the preceding section, the pa_rabolic tip r_adius
what is more relevant in the comparison shown next is théhanges with flow Overall, the scaled amplitudes obtained
relative magnitudes of the sidebranching amplitudes in simuffom the various phase-field simulations with and without
lation and theory, rather than their exact agreement. Simuldlow are in qualitative agreement with the corresponding pre-
tions for weaker anisotropies of 1% or less would be moredictions from the WKB theory. A more quantitative compari-
appropriate for a precise quantitative comparison with WKBSON is not possible due to the above-mentioned uncertainty in
predictions but are comparatively much more costly. TheyS. In fact, the excellent agreement for the no-flow case in
remain an interesting prospect for the future. Fig. 14 may be coincidental.

Figure 14 shows a comparison of the phase-field results We have also applied the WKB theory to explain the
(symbols with the WKB predictionglines) for the variation —asymmetrical sidebranch amplitudes on the upstregnpe)
of the scaled sidebranch amplitude as a function of dimenand downstreanflower) sides of a dendrite arm growing at
sionless distance behind the tip for two noise strengthsin angle with respect to the flow. The measured sidebranch
(1.25x10 * and 5<10 %). In addition to the phase-field amplitudes on both sides of the 45° growing dendrite arm
results with flow from Figs. &) and 9c), data are included shown in Fig. 13 are plotted in Fig. 15 together with the
for a simulation without flow and the lower noise strength.corresponding WKB predictions. The WKB predictions sup-
As expected, the sidebranch amplitudes increase with inport the observation from the phase-field simulation that the
creasing distance from the tip, and the higher noise strengthmplitudes are larger on the upper side than on the lower
results in larger amplitudes. For a given noise strength, theide. Since the same dendrite tip parametsfsg, ando™)
scaled amplitudes with flow are larger than without fiite ~ are used in Eq(21) for both sides, the difference in the
WKB prediction without flow for the higher noise strength amplitudes must be due to the different mean interface
can be obtained from Fig. 14 by simply multiplying the no- shapes of the upper and lower sides of the 45° growing den-
flow amplitudes shown for the lower noise strength by adrite. Since the upper side of the arm is wider than the lower
factor of 2. Even though the form of the WKB relation for side (where the widthx, is the distance between the growth
the amplitude variation, Eq21), remains unchanged in the axis and the noiseless interface in Fig),18q. (21) predicts
presence of flow, flow affects the predicted scaled sidebranclarger amplitudes on the upper side than on the lower side.
amplitudes because it changes the tip-operating parameteryen though the asymmetry in the mean shape between the
(V, p, ando*) used in that equation. These changes in theupper and lower sides is relatively small, the fact thér)
tip-operating parameters explain the scaled amplitudes that exp@’z) for a parabola results in large differences in the
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amplitudes. This sensitivity of the sidebranch amplitudes tdorts the interface shape very near the tip and thus influences
p y _ p
the mean shape has been emphasized by Brener and Temkire actual tip radiug. Further away from the tip, however,
[28]. It should be noted that Eq21) is strictly not valid for  flow leaves the interface shape parabolic and only influences
the dendrite arm growing at an angle with respect to thehe value of the tip radiup,, obtained by fitting a parabola
flow. Since the flow is no longer in an axial direction, its g this shape. This parabolic tip radiys,, which corre-
effect on the advection of the perturbations along the crystaiyonds to the tip radius typically measured experimentally in
may no longer be negligibly small. Solvability and WKB {nree dimensions, is in good agreement with the analytical
sidebranching theories for the case in which the dendritg,q_gimensional Oseen-Ivantsov solution for the tip Peclet
growth axis and the flow are not aligned are presently N0k mper and the linearized solvability theory of Bouissou and
available. _ . Pelce for the ratio of the selection parameters. The applica-
_ Numerical and theoret!cal results for the variation of thebility of these theories, which assume a purely parabolic tip,
sidebranch wavelength with distance behind the tip are conyy, 5y seem surprising. We note, however, that this nontrivial
pared in Fig. 16. As expected from WKB theory, B82),  foatyre of the linearized theory is already present without
the scalgd wavelengths increase with dlstan_ce_behlnd the tighw . In this case, the theory predicts reasonably well the tip
and are independent of the noise strengthwithin the ac-  \g|ocity over a comparable range of anisotropy in both two
curacy of the computed resultsThe scaled wavelengths [49] and even three dimensiofs0] despitethe presence of a
measured from the phase-field simulati¢ésgmbols are vir- 5 istortion already induced by anisotropic surface tension
tually the same with and without flow, which is qualitatively gione We therefore conclude that the shape deviation from a
apparent also from Fig. 11. This relative independence of the, ah01a on a short distance scale from the tip of a fraction of
scaled wavelengths on the flow strength is supported by the \hich is controlled by both anisotropy and flow, does not
corresponding WKB predictions shown in Fig. 16nes).  gjgnificantly influence the tip velocity and the two-

The WKB predictions with flow are only slightly below the gimensional parabolic tip shape on a larger scale of ten tip
one without flow, the difference being primarily due to the .54

fact thato* is somewhat smaller with flow than without. It Convection is also found to enhance the growth of the

would be of interest also to compare the wavelengths fogjgepranches along the upstream growing dendrite arm. The
larger values of the flow parametgt where the ratio of  gjepranch amplitudes, scaled with the tip radius, obtained
selection parameters without to with flow becomes largef o the phase-field simulations are in qualitative agreement
(Fig. 6. Figure 16 also shows that the phase-field result§yith predictions from WKB noise amplification theory. Even
agree only roughly with the WKB theory for the wavelength ihq,gh flow does not change the WKB relation for the varia-
variation, Eq(22), and a relatively large disagreement existsijon of the scaled sidebranch amplitude, the predicted scaled
close to the dendrite tip, even without flow. Karma and Rap{ang unscaledamplitudes differ with and without flow be-
pel[43] have found that, in this case, the agreement betweeg, se the tip-operating parameters used in the relation
theory and numerical results could be improved in that r€thange due to flow. A completely quantitative comparison
gion by incorporating the additional effect of the stretchingpenyeen the scaled sidebranch amplitudes from simulation
of the wavelength of perturbations as they migrate from theynq theory is prevented by the uncertainty in the prefactor of
tip to the sides. We suspect that the same effect is respofe WKB' relation. Phase-field simulations of a dendrite
sible here for the disagreement between simulations and ”t?rowing at an angle with respect to the flow show that the
WKB theory, with flow. sidebranch amplitudes grow much faster on the upstream
side than on the downstream side. The comparison with
WKB theory shows that this asymmetric behavior can be
explained by the differences in the mean shape of the up-
The effects of melt flow on the growth velocity, shape, stream and downstream sides of the inclined dendrite arm.
and sidebranching dynamics of single dendritic crystals=inally, the scaled sidebranch wavelengths obtained from
growing into a supercooled melt are quantitatively investi-phase-field simulations with and without flow show a similar
gated in two dimensions using the phase-field method. Theariation with distance from the tip, indicating that the flow
numerical results show that the flow causes the dendritibas little effect on the selection of the scaled critical wave-
crystal to assume a highly asymmetric shape, which can bength. Any difference is again due to changes in the dendrite
attributed to the strong effect of the direction of the flow tip-operating parameters due to flow, whereas the WKB re-
relative to the growth axes. The flow increases the growthation for the wavelength variation remains the same with
velocity of the arm growing upstream into the flow, has onlyand without flow. The scaled sidebranch wavelengths mea-
a small effect on the arm growing normal to the flow, andsured from the phase-field simulations show some disagree-
retards the growth of the arm growing into the downstreanment with WKB theory near the dendrite tip both with and
direction in the wake of the crystal. without flow. As in[43], we conclude that this is most likely
The phase-field results for the upstream growing dendritelue to the fact that the stretching of the wavelength of per-
reveal that an axial flow significantly changes the operatingurbations close to the tip has so far been neglected in WKB
state of the dendrite tip. The ratio of the tip-selection paramealculations of noise amplificatidi27,28,43.
eters without and with flow, based on the actual tip radius, The extension of the present work to three dimensions,
varies by about a factor of up to 2 over the range of flowweaker anisotropies, higher flow velocities, and lower super-
velocities investigated. This result shows that the flow dis-coolings remains an important challenge for the future.

VI. CONCLUSIONS
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